-Influence of laboratory layout on airflow in university laboratory-

Yukiko Nezu¹), Yuki Nabeshima¹), Hitoshi Yamamoto²), Yoshito Oshima¹)

1) Graduate School of Frontier Sciences, The University of Tokyo
2) Department for the Administration of Safety and Hygiene, Osaka University
Chemical risks in the laboratory environment

✓ Risk of Exposure
 Experimenters are exposed to chemicals and easy to take chemicals in their body during experiments

✓ Risk of Inflammability and Explosion
 Organic solvents are volatile and easy to burn

✓ Risk of Leakage to Environment
 Due to inadequate air balance and pressure condition of laboratory

To reduce chemical risks, reducing chemical concentration and preventing chemical diffusion are important.
Usage of chemical substances in actual laboratory

Time duration for operation and usage of chemicals

- lab bench
- fume hood
- washing bottles
- scales
- waste tanks
- yard

Usage of chemicals by experimenter A
(total time using: 9m11s)

Chemicals are not always handled in fume hood.

Background
Obtaining information of chemical concentration and chemical diffusion in experimental laboratories by

1. measurement of personal chemical exposure in actual laboratory
2. analysis on chemical diffusion in laboratory by Computational Fluid Dynamics (CFD) simulation
3. analysis of relationship between laboratory layout and airflow by Particle Image Velocity (PIV) with 1/10 scale laboratory model

Optimum airflow circumstance for reduction of chemical risks is discussed.
Possibility of unintended chemical exposure due to shared air quality in laboratory

Results & Discussion

<table>
<thead>
<tr>
<th>Experimenter</th>
<th>7/2</th>
<th>7/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>experiment time [min]</td>
<td>none</td>
</tr>
<tr>
<td>A</td>
<td>time average concentration C [ppb]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>time to use chemicals</td>
<td>0.5 min</td>
</tr>
<tr>
<td>B</td>
<td>experiment time [min]</td>
<td>50 min</td>
</tr>
<tr>
<td></td>
<td>time average concentration C [ppb]</td>
<td>acetone: 26.05, CHCl₃: 1.55</td>
</tr>
<tr>
<td></td>
<td>time to use chemicals</td>
<td>0 min</td>
</tr>
</tbody>
</table>
2. chemical diffusion in a laboratory by CFD simulation

Dependence of trajectory of chemical on use of ventilation

Fume hood: ON
Room ventilation: OFF

smooth evacuation by FH

Fume hood: ON
Room ventilation: ON

volatile substance spread out around the room on agitated airflow by room vent

Results & Discussion
3. PIV analysis of airflow with 1/10 scale lab model

Full scale test room

- **Size**: $7.2 \times 7.0 \times 5.0$ m
- **Fume hood**: $19.0 \text{ m}^3/\text{min}$ (face velocity: 0.5 m/s)
- **Ventilation**: $4.9 \text{ m}^3/\text{min}$

1/10 model room

- **Walls**: acrylic plate
- **Room size**: 1/10 of full scale
- **Air velocity**: coordinated by means of Archimedes number
The airflow in the laboratory was visualized by illuminating smoke with a sheet laser. Visualization image can be converted to velocity vectors of smoke particles by PIV (Particle Image Velocimetry).

- PIV software: FlowExpert.
- Sheet laser: 1 W, 532 nm.
- High speed camera: 30 fps (flames per second)

What is PIV measurement?
Analysis-1: Dependence of airflow on positional relationship between fume hood exhaust and air intake

(1) face-to-face
(2) diagonal
3. PIV measurement

Airflow (@X-Z cross section)

FH in "face-to-face" position

- dependence on FH position
3. PIV measurement - dependence on FH position

Airflow (@Y-Z cross section)

FH in "face-to-face" position

Results & Discussion
3. PIV measurement - dependence on FH position

Dependence of airflow on FH position

(1) face-to-face

![Diagram of airflow with Fume hood and air intake]
Dependence of airflow on FH position

(2) diagonal

FH at diagonal position,
- smoother flow to FH
- less turbulent
Analysis-2: Dependence of airflow on room intake/exhaust vents

- **R-in**: Room intake vent
- **R-ex**: Room exhaust vent
- **F-in**: Air supply (for FH)
- **F-ex**: Air exhaust (Fume hood)
3. PIV measurement

- How room vents affect total airflow?

- airflow blocking (air curtain) by room intake vent
- isolated FH exhaust airflow by air curtain
3. PIV measurement

- How room vents affect total airflow?

Dependence of airflow on FH position

Airflow in front of each fume hood (@Y-Z cross section)

With increase of distance between airflow in front of each fume hood.

Results & Discussion
3. PIV measurement

- How room vents affect total airflow?

ODependence of airflow on FH position
Airflow around room intake vent (@Y-Z cross section)

Results & Discussion
Summary

- Must consider unintended chemical exposure by others’ experiments due to shared air quality in laboratory.
- CFD simulation suggests that trajectory of chemicals in laboratory strongly depends on use of room ventilation system.
- Examined influence of fume hood location and intake/exhaust vents on indoor airflow by PIV analysis with 1/10 scale laboratory model.

Quantitative analysis on indoor airflow aids formulating guidelines for proper laboratory design, and for developing technical countermeasures for assessing/reducing chemical risks in experimental laboratories.
Acknowledgement

Financial Support by Grants-in-Aid for Scientific Research (25242014, Scientific Research (A), 2013-2015) and Grant-in-Aid for Exploratory Research (15K12371, Exploratory Research, 2015-2016) from the Japan Society for the Promotion of Science