Assessment and Management of Chemical Risks in Academic Laboratories (3)

- Observing behavior of experimenter and chemical reagents in an actual chemical laboratory-

Yoshito Oshima¹⁾ Yukiko Nezu¹⁾, Hitoshi Yamamoto²⁾

- 1) Graduate School of Frontier Sciences, The University of Tokyo
- 2) Department for the Administration of Safety and Hygiene, Osaka University

Chemical Reagent Handling

In chemical laboratories, many chemical reagents are handled at various **places** for various **purposes** according to various **factors**.

To reduce the risk of chemical substances in laboratories, knowing <u>HOW</u> experimenters use chemicals is important.

Information currently available on Japanese universities

- Registration system of chemicals
- Laboratory waste management system
- Working environment measurement
- Inspection by industrial physician

Characteristics of laboratory research

- ✓ use of large number of various chemical substances approx. 350,000 chemical bottles in UTokyo (as of 2011)^[1]
- transdisciplinarity and diversification of research areas chemistry, physics, biology, physics, mechanics, pharmaceuticals ...

How should chemical risks be assessed in research labs?

total quantity

"steady-state" in routine operation

Introduction

Chemical safety in lab.

- ✓ who uses chemicals
- ✓ what kind of chemical reagents are often used
- ✓ where chemicals are used
- ✓ when chemicals are used
- ✓ why chemicals needs to be used
- ✓ how chemicals are used

This information should be combined to analyze and reduce chemical risks in laboratories.

Case Study Approach

The characteristics in the usage of chemical substances in the chemical lab are analyzed by collecting the following data:

- movement of reagent bottles during experiments by Radio Frequency Identification (RFID) System
- experimenter actions captured by web cameras
- > purpose and procedure of experiment

handling behavior of chemicals

place & layout purpose of experiment procedure

Y. Nezu, R. Hayashi, Y. Oshima, *Journal of Environment and Safety*, **5(1)**, 9-17 (2014). Y. Nezu, R. Hayashi, Y. Oshima, *Journal of Environment and Safety*, **5(2)**, 99-105 (2014).

Radio Frequency Identification (RFID) System & Motion Monitoring by Web Cameras

All the chemical bottles in this lab (213 bottles) are "tagged"

Device that reads "tag" from a distance using radio waves to identify objects

 recorded when chemicals are used at a designated location

 checkout log of chemicals from storage

Checkout log of reagents (example)

Experimenter actions (example)

Analysis on checkout log data of reagents

Where chemicals are frequently used

Places where chemicals are frequently used

/ huby 1 - huby 5)

	(July I-July 5)
Place	Frequency
Lab bench	39
Fume hood	15
Scale	19
Total	73

Tracking of chemical bottles in lab					
Place F	requency	Place of u	sage		
Lab bench(L)	39	L			
Fume hood(F) 5	F	- 67%		
Scale(S)	4	S_			
L→F	4	F]		
L→F→L	5	F			
F→L	1	F			
L→S	7	S	- 33%		
L→S→L	4	S			
$L \rightarrow S \rightarrow L \rightarrow S$	2	S			
S→L	2	S]		

Lab bench functions as a critical "hub"

How long are chemicals used in the lab

	Start	Stop	Time		Operation	Reagent	Place
-	10:45:00	10:51:00	0:06:00		measuring	PEG	scale
	10:52:54	10:55:10	0:02:16		measuring	4-dimethyl aminopyridine	scale
	10:55:30	10:55:35	0:00:05		loading	PEG, 4-dimethyl aminopyridine	scale
	13:33:46	13:34:21	0:00:35		measuring	N,N-dimethyl acetoamide	fume hood
	13:34:22	13:34:50	0:00:28		loading	N,N-dimethyl acetoamide	fume hood
	13:39:53	13:40:06	0:00:13		measuring	triethylamine	fume hood
	13:40:21	13:40:42	0:00:21	21	loading	triethylamine	fume hood
	14:37:24	14:38:45	0:01:21		measuring	2-bromoisobutyryl bromide	fume hood
	14:37:24	14:38:40	0:01:16		loading	2-bromoisobutyryl bromide	fume hood
Day 2	10:46:45	10:47:00	0:00:15		dissolution	N,N-dimethyl acetamide	lab bench
	10:47:03	10:47:45	0:00:42		dissolution	diethyl ether	lab bench
	11:16:13	11:16:29	0:00:16		measuring	methanol	fume hood
	11:16:13	11:16:28	0:00:15		measuring	methanol	fume hood
	11:17:15	11:17:41	0:00:26		loading	diethyl ether	fume hood
	11:17:15	11:17:35	0:00:20		loading	diethyl ether	fume hood
11:2 11:3 11:3 11:3	11:25:10	11:28:02	0:02:52		measuring	reactant (mixture)	fume hood
	11:28:05	11:31:33	0:03:28		still standing	reactant (mixture)	fume hood
	11:31:35	11:32:25	0:00:50		loading	reactant (mixture)	fume hood
	11:32:20	11:32:25	0:00:05		loading	reactant (mixture)	fume hood
	11:37:08	11:37:25	0:00:17		washing	diethyl ether	fume hood
	11:37:08	11:39:41	0:02:33		washing	diethyl ether	fume hood
	11:38:34	11:38:37	0:00:03		washing	diethyl ether	fume hood
	12:32:10	12:35:22	0:03:12		loading	reactant (mixture)	fume hood
	12:36:07	12:36:24	0:00:17		washing	diethyl ether	fume hood

イト

Length of time for chemicals to escape into air

	length o	ratio		
Operation	open-air (a)	total (b)	(a)/(b)	
Extraction	17.5 min	60.8 min	28.7 %	
Precipitation	4.1 min	23.5 min	17.4 %	
Filtration	5.6 min	25.0 min	22.4 %	
Filtration	5.6 min	25.0 min	22.4 %	

cf. total time length of entire experiment: 694 min

Chemicals escaping into the air for a certain length of time is unavoidable, though it may be negligibly short compared with the duration of the entire experiment.

Washing bottles

Purpose

64.3 % for rinsing glassware before and after use

Frequency

65.6 times/day (average)

How are washing bottles used in lab

Rinsing with "washing bottle"

- "non-essential" operation to experiment purpose
- > as frequently as glassware used
- indefinite time until completion of rinsing
- indefinite place (bottle is movable)

a risky procedure that may influence on the chemical exposure

Experimental protocol (from Experimenter A's notebook)

separatory funnel (300 mL)

Classification of experimenter's behavior in lab

[4] not staying in the laboratory

a: observation

b: preparation

c: confirmation and recording

d: cleaning

- e: exit operations
- f: protection
- g: changes and adjustments
- h: others
- i: non-experimental

Distribution of time-duration classified by type of operation

Risks during operation "not in the protocol" are crucial!

Summary

Chemical reagent behavior and experimenter behavior in an actual laboratory analyzed through a case study approach.

<u>Chemical Reagent Behavior</u>

- outing from storage
- trajectory characteristics

Experimenter Behavior

- time duration for operation
- chemical usage

Discussed: how key unit operations affect chemical exposure

Confirmed as crucial:

risk in operations <u>not</u> in protocol
handling chemicals in "shared circumstances

Laboratology concept is critical for ...

scientific and quantitative discussion based on data of visible, measurable phenomena collected in actual laboratories

··· assessing chemical risks in experimental laboratories.

Acknowledgement

Financial Support by Grants-in-Aid for Scientific Research (25242014, Scientific Research (A), 2013-2015) from the Japan Society for the Promotion of Science