Incorporating Hazard Assessment into Laboratory Curricula: One Pathway to Growing a Sustainable Safety Culture

Lawrence Tirri

University of Nevada, Las Vegas

15 March 2016
Presentation Outline

• What and Why of Safety Culture
• ACS Committee on Professional Training
• Institutional Curricular Constraints
• Integrated Approach
• Assessment
What is Safety Culture?

U.S. Dept. of Labor describes Safety Culture where within the work environment

- Everyone feels responsible for each other
- All the time
- Takes the extra step to identify unsafe conditions or practices [for themselves and others] and takes corrective actions.
Why Build a Safety Culture?

- “Right Thing To Do”
- Safer work environment
- Fewer accidents / injuries
- Encourages Team Building
 - Look out for others
 - Promotes “Buy-In” at all levels
- Industrial Setting: leads to increased productivity and improved worker satisfaction
Importance in Academia?

• Safer academic and research labs

• Better prepare all degree graduates to enter profession

• Compliance with Chemical Hygiene Programs
Reality!!

• Anecdotes from Industry: New graduates don’t easily fit into existing safety cultures.

• Division of Chemical Heath And Safety [DCHAS-L] “Chemical Safety Headlines from Google”
 – Reports incidents, accidents, injuries and fatalities
 • Industrial
 • Transportation
 • Academic – Undergraduate and Graduate Labs
 • Middle & High School Labs – Museums etc.
Reality!!!

- U.S. Chemical Safety Board – Reports and Investigates Chemical Related Incidents
- Council for Chemical Research – suggests Need for Change in Behavioral Competencies
- ACS Presidential Commission “Advancing Graduate Education in the Chemical Sciences”
 – Concludes in part “Academic chemical laboratories must adopt best safety practices.”
Reality!!!

• We have not always done a good job in the past.

• Summary:
 – Do a better job to implement best practices in all academic and research labs.
 – Implement change to develop a safety culture climate
Reality!!!

• ACS Committee on Professional Training 2015 Guidelines, requires Approved Undergraduate Degree Programs
 – “...promote a safety-conscience culture...”
 – “…must begin during the first laboratory experience ...”
 – include assessment of hazards and risks
 – Inherent in all levels of curriculum
 – Functional Safety Committee
Curricular Constraints at UNLV

- Approaches Considered
 - Develop a required course on laboratory safety
 - Safety Culture
 - Hazard Assessment Report
 - Hazard recognition
 - Assessment of hazards and risk
 - Manage or eliminate hazard
Curricular Constraints at UNLV

• Approaches Considered
 – Lab Safety Course Continued:
 • Where to place it in curriculum?
 – Prerequisite for first lab course
 » Majors and/or Non-majors?
 – Junior or Senior level major’s course
 » Inconsistent with 2015 Guideline for first lab experience
Curricular Constraints at UNLV

• Approaches Considered
 – Lab Safety Course Continued:
 • Will the course fit into the degree curriculum?
 • NSHE Board of Regents mandated credit limit set at 120 credits for all degree programs
 – Impossible to add course without negative effects to degree programs
 • Conclusion: For UNLV, an Undergraduate Lab Safety Course will not work at this time.
Curricular Constraints at UNLV

• Approaches Considered
 – Supplement current pre-lab lectures with safety information and hazard assessment concepts
 • All Labs? Some Labs?
 • All Majors? Just Chemistry Majors?
 – UNLV Labs are not segregated by Major, thus All Labs, All Majors
 – What level of instruction is appropriate?
 • Lab time considerations require a progressive approach
Curricular Constraints at UNLV

• Decision: Supplement Pre-Lab lectures
 – Use approach starting with basics in General Chem Labs, progressively becoming more sophisticated
 • First Year – Basics, through Senior Level - Intensive
 • Identification and assessment of hazards with each successive lab course
 • Introduces Hazard Recognition to All Majors in All Labs and methods to reduce or manage hazards.
Curricular Constraints at UNLV

• General Education Reform at UNLV
 – Special Experiences for each year level.
 • First and Second Year more generic experiences; curricular content not under our control
 • Third Year Milestone Experience
 – Intensive Research Paper Discussion and Critique in Analytical Chemistry Course focusing on Technical Analysis and Written Communication Skills
 • Fourth Year Capstone or Culminating Experience
 – Written Hazard Analysis Report as part of student’s senior lab grade. Also serves as Assessment Tool
Implementation

• Students introduced to Safety Data Sheets and information contained therein during pre-lab lectures

• Students introduced to concept of Hazard Recognition and basic Hazard/Risk Assessment
 – Considering
 • Specific Hazards
 • Quantities of Materials Used
 • Concentrations of solutions
 – Example: Concentrated vs Dilute Solutions of H₂SO₄
 • Safe Handling & Management Practices
 • Mitigation Methods and Exposure Response Procedures
Implementation

• Graduate TAs teach in all undergraduate labs
 – Gen Chem and Organic Chem, TAs supervised by lab coordinator
 – Junior and Senior Labs, TAs assist faculty.

• TAs receive intensive training before fall semester
 – Chemical Hygiene and Safety Culture Concepts
 – Hazard Awareness and Identification
 – Hazard and Risk Assessments
 – Departmental Expectations for Presenting Information to students in labs
Implementation

• Significant TA Challenges
 – Undergrad experiences are varied,
 – Cultural, Language and Communication issues

• Assign first year TAs to shadow second year TAs
Implementation

• Safety Related Questions on Lab Quizzes and Exams with written reports in advanced labs

• Related Positive Outcomes
 – Graduate TAs bring practices into research labs
 – Degree recipients better prepared to function as a professional chemists or graduate students.
 – Non-majors develop a heightened hazard awareness and basics of hazard assessment.
• COMMENTS - QUESTIONS?

• Thank you and the ACS DCHAS for this opportunity.