Use of RFID for managing large chemical Inventories

Joe Pickel

March 16, 2016

Chemical, Sample and Asset Management Tools Symposium

Presentation built on the work of: Jeff Sickau, Virginia Hopkins, Mikayla Deardorff, Marcus Mentzer, and many more!!

ORNL is managed by UT-Battelle for the US Department of Energy

- Background- The scale of the chemical inventories at ORNL
- Discussion of Tools and Methodologies
- Implementation of the RFID program and Lessons learned
- What's next

Background Info

- Chemical Division
 - 24,000 items (approx 25% of total campus inventory) in ~100 areas
- Hierarchy
 - Fire Protection Limits based on building design and zone (Hazardous Materials Control Areas)
 - Chemicals Stored in Labs and storage rooms (control areas)

Hazardous Materials Management Information System (HMMIS)

- Integrated with Fire Protection Technical requirements (Maximum Allowable Quantities)
 - Exceedance Reports
- Highly searchable (location, common name, category, CAS,
- Repository for SDS collection
- Integrated with Purchasing
 - Forces consideration of items deemed surplus
 - Compares new item requests to existing inventory

Home > HMMIS > FUA Limits Re	eport						
Diant			Only Didge Netional Laborat		Complex (e	nh: applicable to ODMI) .	Allah Applicable 2
Plant			Oak Ridge National Laborat	ory 🗸	Complex (o	inly applicable to OKNL) :	< Not Applicable > V
Building			4100 🗸		HM Control	Zone	All
Classifications			Explosive, Corrosive, Pyrop	hor ic 💙	Sub Classifi	ications	True, C1, C2, C3, C1A, C1B, C1
Report is to be generated for o	only HM Control Zones where the LI	MIT has been exceeded?	No		Show HMCA	A Details	● True ○ False
Include Private Control Area D	ata?		⊖ True ● False		Secondary	Sort	Classification V
Drimary/Sort							
Prind your							
	Frank and Frank		A 0 B				
	100%	Find Next 💌 •	🕲 🥽 🔛				
4100:7	Flammable Gas	Gas	1,370.74 CUFT	4,000.00	CUFT	34.27	
4100:8	Flammable Gas	Gas	3,207.62 CUFT	4,000.00	CUFT	80.19	
4100:9	Flammable Gas	Gas	581.99 CUFT	4,000.00	CUFT	14.55	
4100:1	Flammable Liquified Gas	Liquid	1.70 GAL	60.00	GAL	2.84	
4100:2	Flammable Liquified Gas	Liquid	0.15 GAL	60.00	GAL	0.25	
4100:4	Flammable Liquified Gas	Liquid	0.00 GAL	60.00	GAL	0.00	
4100 : 5	Flammable Liquified Gas	Liquid	10.26 GAL	60.00	GAL	17.11	
4100:6	Flammable Liquified Gas	Liquid	0.53 GAL	60.00	GAL	0.88	
4100:7	Flammable Liquified Gas	Liquid	9.54 GAL	60.00	GAL	15.90	
4100:1	Flammable_Solid	Solid	25.57 LB	250.00	LB	10.23	
4100:2	Flammable_Solid	Solid	27.00 LB	250.00	LB	10.80	
4100:3	Flammable_Solid	Solid	1.77 LB	250.00	LB	0.71	
4100:4	Flammable_Solid	Solid	19.99 LB	250.00	LB	7.99	
4100 : 5	Flammable_Solid	Solid	22.22 LB	250.00	LB	8.89	
4100:6	Flammable_Solid	Solid	16.41 LB	250.00	LB	6.57	
4100:7	Flammable_Solid	Solid	30.01 LB	250.00	LB	12.01	
4100:8	Flammable_Solid	Solid	5.28 LB	250.00	LB	2.11	
4100:9	Flammable Solid	Solid	3.84 LB	250.00	LB	1.53	
4100 : HAZ-1	Hammable Solid	Solid	2.31 LB	1,000.00	LB	0.23	
4100 : HAZ-2	Hammable Solid	Solid	0.47 LB	1,000.00	LB	0.05	
4100 : HAZ-3	Flammable_Solid	Solid	3.89 LB	1,000.00	LB	0.39	
4100:1	Highly Toxic	Solid	18.55 LB	20.00	LB	92.74	
4100:1	Highly Toxic	Liquid	19.79 LB	20.00	LB	98.95	
4100:2	Highly Toxic	Liquid	22.80 LB	20.00	LB	114.00	
4100:2	Highly Toxic	Solid	16.63 LB	20.00	LB	83.15	
4100:3	Highly Toxic	Gas	30.00 CUFT	40.00	CUFT	75.00	
4100:3	Highly Toxic	Solid	2.72 LB	20.00	LB	13.58	

Why and How

Maintain Inventories to :

- Stay under chemical loading limits for facility (Fire Protection)
- Know where our chemicals are located; Inventory sufficient for work (Mission Execution)

By:

- Conducting 100% Annual inventory
- Capture Adds/Consumes/Moves of chemicals

Pre 2000: Excel Spreadsheets, track by name

- ~2000: Web Based Inventory System (HMMiS)
 - Track by unique identifier (YEARMODALOITEM)
 - Label with optical/text barcode
- 2010: Transition to RFID/optical/text barcode
 - Rolling System Conversion- all new chemicals come with RFID tag
 - Comprehensive local conversion lab by lab conversion of existing tags

OAK RIDGE National Laboratory

About RFID

- Radio-frequency identification (RFID) uses <u>electromagnetic fields</u> to automatically identify and track tags attached to objects.
 - The tags contain electronically stored information.
 - Passive tags collect energy from a nearby RFID reader's interrogating radio waves.
 - Active tags have a local power source such as a battery and may operate at hundreds of meters from the RFID reader.
 - The tag need not be within the line of sight of the reader, so it may be embedded in the tracked object.

Source: https://en.wikipedia.org/wiki/Radio-frequency_identification

Tags

- Optical Tags: Barcode correlates to unique identifiers
 - Identifier associated with information in Database
- RFID: The tags contain electronically stored information on multiple channels.

National Laboratory

- Unique Identifier of tag can be associated with database
- Tags can be "written" on to store additional information
 OAK R

Scanner Technology

Factors to consider

- Cost
- Back end system
- Antenna Power and directionality
- Ease of Use
- Generation-1 Scanner (linear)
 - Best locator functionalities
 - Limited battery; communications issues
- Generation-2 Scanner (conical)
 - Less dependent on label orientation
 - Integrated system
- Both Scanners allow manual entry (keypad) and optical scanning

7 RFID Tools 20160316

Advantages of Automated Methods RFID

- Time savings for grouped containers
- Reduction in incidental contact with chemicals
- Reduced likelihood of spills from container handling
- Reduced injury potential from accessing containers
- RFID tags appear to be more durable than bar code labels
- Line of sight reading is not necessary
- Larger data capacity
- Readable through glass cabinets

Disadvantages of Automated Methods RFID

- Signal Attenuation
 - Signal can reflect off metal cabinets
 - Level of liquid in bottle can affect signal attenuation
 - Tag placed on metal can may attenuate signal
- Signal strength can lead to read overlap in a multiple control area location.
- Large labels may not fit on small bottles
 - Convert to smaller labels
 - Truncate or fold labels
 - Utilize "Tent" Labels
- Label printing overlap
 - Next generation printers resolve this issue with isolation

Flammable Cabinet

Conditions of area scanned:

- Cabinet doors open
- Multiple shelves
- Multiple items per shelf
- Various container sizes and placement

RFID was 100% accurate at a distance of 2 ft. from containers.

Open Shelving and Counters

Condition of area scanned:

- Multiple shelves
- Various container types and sizes
- Multiple shelf locations
- Items placed in secondary containers (i.e. plastic baggies and beakers)

RFID was 60% accurate at a distance of 4 ft. from containers and 100% accurate at a distance of 3 ft.

Typical Laboratory Storage

Condition of area scanned:

- Countertop placement
- Items located behind glass doors (i.e. hoods and cabinets)
- Wooden containers
- Items located behind obstructions (i.e. ۲ boxes, lab items, etc.)
- Desiccators

RFID was 100% accurate at varied distances from containers while moving about lab. OAK RIDGE National Laboratory

Most Effective Scanning Method

- Move reader horizontally
- Place RFID tag near top of the container
- Tag facing outward
- Move scanner at a pace proportionate to container density.

Efficiency of Process

Method: <u>Manual</u>	Time (min)	% error	Cost for labor	Read rate
Trial 1:	140	0	\$35.00	62 s
Trial 2:	78	0	\$19.50	35 s
Average:	109	0	\$27.25	48 s
Method: <u>Barcode</u>	Time (min)	% error	Cost for labor	Read rate
Method: Barcode Trial 1:	Time (min) 17	% error 0	Cost for labor \$4.25	Read rate 7.5 s
Method: Barcode Trial 1: Trial 2:	Time (min) 17 15	% error 0 0	Cost for labor \$4.25 \$3.75	Read rate 7.5 s 6.6 s

Method: 1 st RFID	Time (min)	% error	Cost for labor	Read rate
Trial 1:	8	15 (19/135)	\$2.00	3.5 s
Trial 2:	9	12 (16/135)	\$2.25	4.0 s
Average:	8.5	14.5	\$2.13	3.75 s

Productivity Gains

Item	RFID	Barcode
Read Rate	30 tags/second	1 barcode / 6 seconds
Time per area reconciled	1-2 hours	8-10 hours
Time to annually reconcile ~1,300 storage areas at	1,300 – 2,600 hours	10,400 – 13,000 hours
Example cost assuming		
\$15/man-hour (intern)	\$19,500 - \$39,000	\$156,000 - \$195,000
Potential Annual Labor Time Savings	9,100 – 10,400 hours	N/A
Annual Labor Cost Savings	\$136,500 - \$186,400	N/A

System Setup Cost

Labels / Tags	¢0.17 aaab	
		\$0.02 each
Mobile Readers / Scanners	\$3,000 each (dual purpose)	\$1,450 each
Primary Printers for Production (2)	\$3,150 each	\$1,500 each
Secondary Printers for Satellite Locations (optional)	\$987 each	\$267 each
System Programming	\$10,000	\$8,000
System Start-up Cost (2 production printers)	- \$6,300	- \$3,000
 3 satellite printers (optional) 	- \$2,961 - \$1,700	- \$801 - \$200
- 10,000 labels	- \$9,000	- \$4,350
- 3 readers	- \$10,000	- \$8,000
- Programming	Total = \$29,961	Total = \$16,351

PNNL Deployment

- Conversion from barcode system to RFID
- Benchmarked ORNL
- Improved Conversion process; RFID data utilizatin

Large RFID Label (not actual size)	
Charried Name TETRAHYDROFURAN THezard Chemical	e-ve
373856 Chemical 3	
Size: 1.00L Conc: 99.9PCT	nal t
Acquired: 05/13 OS Level	

Expansion to Other Inventories Sample Management

- Derivative of Inventory System mirrored for sample management
 - Rigorous sample registration process for potential beam line samples
 - Strategically deployed printers to facilitate immediate labeling
 - Sample management software include disposition and radiological activation components

Other Considerations

- Maintaining 100% inventory only possible if all add/ remove/transfer systems work 100%
 - If it did- is annual inventory required
 - Knowing it doesn't- is annual frequency sufficient?
- Who will conduct the inventory is important
 - Additional technology or personnel adds complexity, affects efficiency
- RFID process opens many opportunities
 - Process is only as good as the systems behind it
 - Factors such as where the data is stored and how it is transferred will affect process

What's next (conceptual)

System focus

- Expand beyond chemicals (samples, assets)
- Improved Functionality (Find Me RADAR)
- Conversion station
- Static inventory methods
 - RFID portals
 - Inventory station

User focus

- Label improvements
- Accessibility with in lab devices (phone, ipads)

- Scanning technologies can improve inventory efficiency and safety
 - Method should depend on size and turnover of inventory
 - Multiple techniques can be utilized with well-designed labels
- There is no standard (yet?)- Selection of equipment and integration with back-end system requires careful planning to address local needs

https://youtu.be/D7fX3nqHhGI

Additional Information

- OpenWave Website (<u>http://openwaverfid.com/</u>)
- Swedberg, C. (2013). RFID Tracks Chemical Inventory at Oak Ridge National Laboratory. Retrieved on 06/03/2015 from <u>http://www.rfidjournal.com/articles/pdf?10850</u>
- Tseng, S., Kuo Yuan Hwa, , IFan Chang, , & Wenlung Li, (2009). An automatic RFID and wireless sensing system on GHS-bases hazardous chemicals management platform. *Informally published manuscript*, National Taipei University of Technology, Taipei, Taiwan. Retrieved on 06/05/2015 from

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05402987

