

Health & Safety Considerations for Persons who Have Functional Limitations & Work in Laboratories

Janet Baum, AIA, DivCHAS

Program Co-Director and Instructor Harvard University, T.H. Chan School of Public Health

AGENDA

Introduction to ADA & Functional Limitations Identifying Hazards & Evaluating Risks in Labs Access to and Egress within Laboratories Improving Chemical Hood Safety & Testing Recommendations

Introduction to ADA & Functional Limitations

Examples of ADA - Disabilities Prior to Final Rule, Aug. 11, 2016

- AIDS, and its symptoms
- Alcoholism
- Asthma
- Blindness/visual impairments
- Cancer
- Cerebral palsy
- Depression
- Diabetes
- Epilepsy
- Hearing & speech impairments

- Heart disease
- Loss of body parts
- Migraine headaches
- Multiple sclerosis
- Muscular dystrophy
- Orthopedic impairments
- Paralysis
- Complications from pregnancy
- Thyroid gland disorders
- Tuberculosis

Introduction to ADA & Functional Limitations

Disability & Functional Limitations have potential to increase risk to workers in laboratories

- Mobility impairments in lower body
- Fine motor impairments in upper body
- Visual impairment
- Hearing impairment
- Vocal/ verbal impairment
- Vestibular impairment
- Peripheral nerve damage
- Developmental disabilities
- Psychological impairment

Introduction to ADA & Functional Limitations

U.S. Census Data on Americans with Disabilities

56.7 M Americans with Disabilities, 2010

By age

8% Children 14 years and younger

21% Persons 15 years and older

17% Persons 21 years to 64 years

50% Persons 65 years and older

U. S. Census Bureau, Statistics, Department of Commerce, 2010

Introduction to ADA & Functional Limitations U.S. Census Data on Americans with Disabilities 56.7 M Americans with Disabilities, 2010 By disability **30.6** M have difficulty walking & climbing stairs **12.0** M require assistance with everyday tasks 8.1 M have vision limitations, partial or total blindness of whom **3.4** million are Legally Blind (CDC data) 7.6 M have hearing difficulty or total deafness of whom **26.7** M \geq 50 vrs have hearing loss (AMA data) 3.6 M use wheelchairs 2.4 M have Alzheimer's, senility, or dementia

U. S. Census Bureau, Statistics, Department of Commerce, 2010

AGENDA

Introduction to ADA & Functional Limitations
Identifying Hazards & Evaluating Risks in Labs
Access to and Egress within Laboratories
Improving Chemical Hood Safety
Recommendations

Recommendations

	HAZARD TYPES	EXAMPLES
	AGENT	Carcinogenic, teratogenic, corrosive, pyrophoric, toxic, mutagenic, reprodu- ctive hazard, explosive, nonionizng radiation, biological hazard/ pathogenic, flammable, oxidizing, self-reactive or unstable, explosive, reducing, water reactive, sensitizing, peroxide forming, catalytic, or chemical asphyxiate
	CONDITION	High pressure, low pressure, electrical/ electrified, uneven surfaces, pinch points, suspended weight, hot surfaces, extreme cold steam, noise, clutter, magnetic fields, simple asphyxiant, oxygen-deficient spaces, ultraviolet radiation, laser light
	ACTIVITY	Creation of secondary products, lifting, chemical mixing, long-term use of dry boxes, repetitive pipetting, scale-up, waste handline, transport of hazardous materials, glassware handling, sharp objects handling, heating, recrystallizating, extracting, and centrifuging chemicals

Table 3-1: "Examples of Hazards Commonly Identified for Research Activities", p. 18, 19 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Chemical Safety Levels – Characterization Factors

Г	HAZARD	FIRE	CONCENTRATION	REACTIVITY	ACUTE TOXICITY	CHRONIC TOXICITY	OTHER
ŀ	HALAND	rins	CONCENTION	REACTIVITY	ACOTE TOXICITY	chikolaic roxierri	OTHER
	CSL-1	Flashpoint above ambient temp (140 deg. F.)		No chemical changes expected in the process	All chemicals have known toxicities and OELs > 500 ppm	None known	
	CSL-2	Flashpoint near ambient temp	Expected concentration < 10% LEL	No known incompati- bilities between chemicals used	All chemicals have known toxicities and 10 ppm < OELs, < 500 ppm	Specific target organs or irreversible effects suspected	
	CSL-3		Expected concentration > 10% LEL	Chemicals with known reactions or contamination hazards present	Unknown toxicities or OEL < 10 ppm	Specific target organs or irreversible effects probable	
	CSL-4	Pytophorics, air, or water reactives, etc.		High hazard reactions in use	OEL < 1 ppm	Irreversible toxicities require use of designated areas	

Adapted from Table 8-2: "Approach to Using Raw Data to Assign Chemical Safety Levels", p. 36 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Chemical Safety Level – GHS Hazard Statements

	Materials with the following GHS hazard statements are presumed to be a high physical hazard (or health hazard) and subject to a risk assessment of its actual use							
,	H201	Explosive; mass explosion hazard	H251	Self-heating; may catch on fire				
,	H202	Explosive; severe projectile hazard	H252	Self-heating in large quantities; may catch on fire				
•	H203	Explosive; fire, blast, or projectile hazard	H260	In contact with water, releases flammable gases; can ignite spontaneously				
,	H220	Extremely flammable gas	H270	Oxidizer; may cause or intensify a fire				
,	H240	Heating may cause an explosion	H271	Strong Oxidizer: may cause fire or explosion				
1	H241	Heating may cause a fire or explosion	H300	Fatal if swallowed				
,	H242	242 Heating may cause a fire		Fatal in contact with skin				
,	H250	Catches fire spontaneously if exposed to air	H330	Fatal if inhaled				

2. Definitions: High Hazard Materials (consider in application to chemical safety levels), p. 14 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Techniques to Evaluate Hazards Best Suited for the Research

- 1. Control Banding of Chemical Uses in Research Laboratories
- 2. Job Hazard Analysis
- 3. What-If Analysis
- 4. Checklists
- 5. Structured Development of Standard Operating Procedures
- 6. Nomograms

All of these methods rely upon having the right expertise to ask the right questions

Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Techniques to Evaluate Hazards: **SOP**s Standard Operating Procedures

- This comprehensive, structured approach to identify <u>failure</u> <u>points</u> of both <u>single hazards</u> and <u>combinations of hazards</u> of an experiment <u>step by step</u>.
- Analyze each step separately then combined to reduce risk.
- Can incorporate other methods, but SOPs require more time and expertise than other methods.
- Do a collaborative process with all levels of workers.
- Start by identifying hazards and creating process steps.
- Evaluate hazards and steps one by one; repeat evaluation for combinations of hazards and steps. Write SOPs with results.

Section 12, pp. 81-89 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Technique: **SOP**s – Table of Contents (sample)

- 1. Master SOP for writing quality management documents SAFETY
- 2. Procedure in case of spill of specimens in an AFB microscopy laboratory
- 3. Procedure in case of spill of infectious material within the biological safety cabinet
- 4. Emergency procedure in case of major biohazard incident outside the BSC
- 5. Fumigation of a biological safety cabinet
- 6. Emergency procedure in case of fire
- 7. Use of personal protective equipment in an AFB microscopy laboratory
- 8. Use of personal protective equipment for culture and drug susceptibility testing
- 9. Use of disinfectants

USE & MAINTENANCE OF EQUIPMENT

- 10. Use and maintenance of class I and class II biological safety cabinets
- 11. Use and maintenance of an autoclave
- 12. Use and maintenance of an electromagnetic balance

Technique: Standard Operating Procedures (example)

USE & MAINTENANCE OF EQUIPMENT (continued)

- 13. Use and maintenance of a centrifuge
- 14. Use and maintenance of a freezer
- 15. Use and maintenance of a refrigerator
- 16. Use and maintenance of an incubator
- 17. Use and maintenance of an inspissator
- 18. Maintenance of a light microscope
- 19. Maintenance of a fluorescence microscope
- 20. Use and maintenance of a pH meter
- 21. Use and maintenance of a water distiller **PREPARATION OF REAGENTS**
- 22. Preparation of reagents for microscopy
- 23. Preparation of reagents for culture, drug-susceptibility testing
- 24. Preparation of plain egg-based media
- 25. Preparation of Löwenstein–Jensen drug-containing media

Technique: Standard Operating Procedures (example) PROCEDURES

- 26. Ziehl-Neelsen staining
- 27. Auramine staining
- 28. Rechecking acid-fast bacilli smears for external quality assessment
- 29. Sample conditions and transport for culture procedure
- 30. Specimen processing for culture
- 31. Drug susceptibility testing, proportion method
- 32. Identification of Mycobacterium tuberculosis
- Niacin test
- 34. Catalase test
- 35. Nitrate reduction test
- 36. Growth on PNB medium
- 37. Maintenance of mycobacterial strains

 Technique: SOPs - Standard Operating Procedures Procedure - 35. Nitrate reduction test (example)

Table of Contents

- 1. Scope
- 2. Definitions and abbreviations
- 3. Personnel qualifications
- 3.1 Medical fitness
- 3.2 Education and training
- 4. Procedure
- 4.1 Principle
- 4.2 Samples

- 4.3 Equipment and materials
- 4.4 Reagents and solutions
- 4.5 Detailed procedure
- 4.6 Result and interpretation
- 4.7 Quality control
- 4.8 Waste management
- 5. Related documents
- Annex. Preparation of standards

Technique: SOPs - Standard Operating Procedures

	EVALUATE EACH STEP & TASK	HAZARD DEMTIFICATION (Innown hazards, safety constraints & restrictions)	SPECIFIC ISSUES IDENTIFIED	Risk Assessment (what's most likely to go wrong & most severe consequences)	UTERATURE SEARCH & CONSULTATION (with experts & experienced supervisors)	STRATEGIES TO ELIMINATE, CONTROL OR MITIGATE HAZARDS	ELIVENATE, CONTROL OR MITIGATE PLAN &	ELIMINATE, CONTROL OR MITIGATE PLAN B	WILL STANDARD PRECAUTIONS BE ADEQUATE? (Revelop criteria in writing)
	REGULATORY CONCERNS								
	HUMAN FACTORS								
	FACILITY								
	MATERIALS								
	EQUIPMENT & LABWARE								
	PROCESS								
(EFFECT OF CHANGE IN DESIGN OR OF CONDITIONS								
	POSSIBILITY FOR ADDITIVE OR SYNERGISTIC EFFECT								
t	POSSIBILITY OF UNKNOWN EFFECT	J							
	EFFLUENT/ WASTE MANAGEMENT								
	AVAILABILITY OF PPE								
	EMERGENCY RESPONSE RESOURCES								
(POTENTIAL FAILURE POINTS								
	ROUTINE ACTIVITIES WITH HIGH RISK OF HARM								

Table 12-1 "Structured Development of SOPs - Work from Detailed Scientific Protocol", pp. 84-85 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Techniques to Assess Risk

- Equation
 - Evaluate Severity of Consequences Value [CV]
 - Estimate Probability of Occurrence Value [OV]
 - Risk Rating [RR] = [CV] x [OV]

Appendix B, pp. 93-97 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

Techniques to Assess Risk

Evaluate Severity of Consequences Value [CV]

CONSEQUENCE VALUE

RATING	VALUE	PERSONNEL SAFETY	RESOURCES	WORK PERFORMANCE	PROPERTY DAMAGE	REPUTATION	
NO RISK	1	No injuries	No impact	No delays	Minor	No impact	
MINOR	2	Minor injuries	Moderate impact	Modest delays	Moderate	Potential damage	
MODERATE	3	Moderate to life impacting injuries	Additional resources required	Significant delays	Substantial	Damaged	
HIGH	4	Life-threatening injuries from single exposure	Institutional resources required	Major operational disruptions	Severe	Loss of confidence	

It is important to select an appropriate value scale that meets the institution's priorities and risk management

Technique to Assess Risk

Estimate Probability of Occurrence Value [OV]

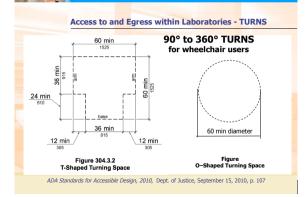
	OCCURRENCE VALUE		
I BELL PROPERTY	RATING	VALUE	PERCENT
	NOT PRESENT	0	0%
Select an appropriate value	RARE	1	1 - 10%
scale that meets your lab's & institution's priorities for	POSSIBLE	2	10 - 50%
risk management	LIKELY	3	50 - 90%
	ALMOST CERTAIN TO OCCUR	4	90 - 100%

Adapted from Table B-2: "Probability of Occurrence with Standard Linear Scaling" Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

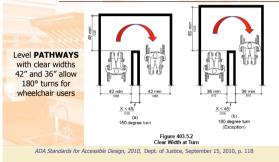
Technique to Assess Risk: [RR] = [CV] x [OV]

Adapted from Table B-3: "Example of Hazard Risk Rating with Standard Linear Scaling of Values" Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015

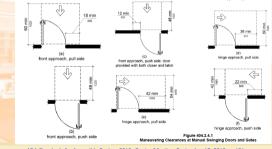
Technique to Assess Risk: Nomogram Method


- Software & web applications available
- Semi-quantitatively measures risk
- Easy to visualize risk severity
- Able to manipulate probability, exposure and consequence possible

"The Electronic Risk Score Calculator" http://www.safetyrisk.com.au/free-safety-and-risk-management-downloads-page-1 Identifying and Evaluating Hazards in Research Laboratories, American Chemical Society, 2015



AGENDA


Introduction to ADA & Functional Limitations Identifying Hazards & Evaluating Risks in Labs Access to & and Egress within Laboratories Improving Chemical Hood Safety & Testing Recommendations

Access to and Egress within Laboratories - PATHWAYS

Access to and Egress within Laboratories - DOORS

ADA Standards for Accessible Design, 2010, Dept. of Justice, September 15, 2010, p. 121

Access and Egress within Laboratories – EXIT ROUTES

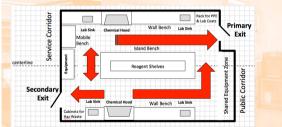
OSHA 1910.37(a)(2)

"EXIT ROUTES must be kept free of explosive or highly flammable furnishings or other decorations."

"EXIT ROUTES must be arranged so that employees will not have to travel toward a high hazard area, unless the path of travel is effectively shielded from the high hazard area by suitable partitions or other physical barriers."

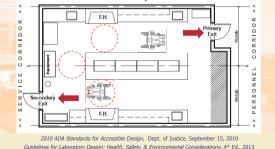
Laboratory Standard 1910.1450 (OSHA, 2013), Occupational Safety & Health Administration Guidelines for Laboratory Design: Health, Safety, & Environmental Considerations, 4th Ed., 2013, p. 70.

Access Within Laboratories and Egress

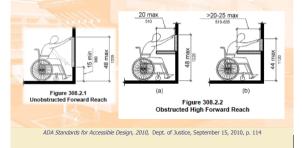

Hazard Zoning Concept – <u>Guidelines for Laboratory</u> <u>Design: Health, Safety, and Environmental Considerations</u>, 4th Ed., DiBerardinis, Baum, First, Gatwood, Seth

"The safest arrangement for laboratory egress is for each required exit door to open into a separate fire zone and for each exit to be located so the pathways within the laboratory or laboratory suite are separated, as far apart as feasible. Thus, when an accident or other emergency makes one laboratory escape pathway impassable, the second can provide an alternative safe route out to another fire-rated building egress pathway."

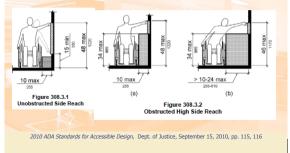
Guidelines for Laboratory Design: Health, Safety, & Environmental Considerations, 4th Ed., 2013, p. 70. Occupational Safety & Health Administration, Laboratory Standard 1910.1450 (OSHA, 2013)

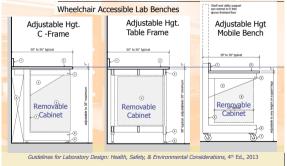

Hazard Zoning Concept – GLD, 4th Ed., 2013

Guidelines for Laboratory Design: Health, Safety, & Environmental Considerations, 4th Ed., 2013 Laboratory Standard 1910.1450 (OSHA, 2013), Occupational Safety & Health Administration


Wheelchair Accessibility

Access to and Within Laboratories and Egress


Wheelchair Accessibility – Height & Reach Limits: FORWARD


Access to and Within Laboratories and Egress

Wheelchair Accessibility – Height & Reach Limits: SIDE

Articles - Accommodating visually impaired and deaf chemists

"The Value of Safety & Practicality: Recommendations For Training Disabled Students in the Sciences with a Focus on Blind & Visually Impaired Students in Chemistry Labs" By Nepomuceno, Decker, Shaw, Boyes, Tantillo, and Wedler

"Chemical and Biological Research with Deaf and Hard-of-Hearing Students and Professionals: Ensuring a Safe & Successful Laboratory Environment" By Smith, Ross, and Pagano

Journal of Chemical Health & Safety. January/February, 2016, Volume 23, No. 1 pp. 5 – 11 and pp. 24 – 31 respectively

Ergonomic Challenges

"There are 2 components for the longterm solution to reduce the observed awkward postures associated with sample preparation tasks:

- Work Station Design and
- Implementation of Stretching Program Due to the variations amongst the 6 observed tasks, workstation design considerations need to be tailored to the individual tasks."

"An Ergonomic Assessment of Sample Preparation Job Tasks in a Chemical Laboratory" by M. Mork, S. Choi, Journal of Chemical Health & Safety. July/August, 2015, Volume 22, No. 4, pp. 23 – 32

Sight Impairment

703.4 Installation Height and Location. Signs with tactile characters shall comply with 703.4.

703.4.1 Height Above Finish Floor or Ground. Tactile characters on signs shall be located 48 inches (1220 mm) minimum above the finish floor or ground surface, measured from the baseline of the lowest *tactile character* and 60 inches (1525 mm) maximum above the finish floor or ground surface, measured from the baseline of the highest *tactile character*.

EXCEPTION: Tactile characters for elevator car controls shall not be required to comply with 703.4.1.

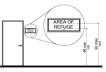


Figure 703.4.1 Height of Tactile Characters Above Finish Floor or Ground

2010 ADA Standards for Accessible Design, Dept. of Justice, September 15, 2010, pp. 189

Access to and Egress within Laboratories

Hearing Impairment

703.7.2.4 Assistive Listening Systems. Assistive listening systems shall be identified by the International Symbol of Access for Hearing Loss complying with Figure 703.7.2.4.

Figure 703.7.2.4 International Symbol of Access for Hearing Loss

2010 ADA Standards for Accessible Design, Dept. of Justice, September 15, 2010, pp. 194

AGENDA

Introduction to ADA and Functional Limitations Identifying Hazards & Evaluating Risks in Labs Access to and Egress within Laboratories Improving Chemical Hood Safety & Testing Recommendations

WHY Study Chemical Hood Containment?

Images provided by Farhad Memarzedeh, Ph.D., P.E., National Institutes of Health

WHY Study Chemical Hood Containment?

Images provided by Farhad Memarzedeh, Ph.D., P.E., National Institutes of Health

NIH Study of Chemical Hood Containment & Performance

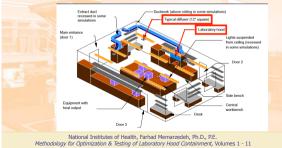
http://orf.od.nih.gov/PoliciesAndGuidelines/Bioenvironmental/

Methodology for Optimization of Laboratory Hood Containment

Volume 1 of 11

Constant of the second se

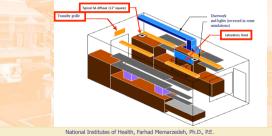
Project Approach for NIH Study FH Containment



National Institutes of Health (NIH) recognized that numerical modeling could be used to look at many configurations and therefore allow a more comprehensive study.

- Uses airflow modeling to undertake a sensitivity study of >250 lab configurations. This represents over 1M measurements for each configuration.
- Provides good understanding of ventilation and containment performance of chemical hoods.
- Provides a scientific comparison of >250 different configurations for containment.

Lab 33 ft. by 22 ft.- 1 chemical hood on long wall



Laboratory Health & Safety Considerations for Persons with Disabilities

Improving Chemical Hood Safety & Testing

Lab 22 ft. by 11 ft.- 1 chemical hood on long wall

Methodology for Optimization & Testing of Laboratory Hood Containment, Volumes 1 - 11

Other Experimental Configuration Parameters

Diffusers: Location, Number, and Type (square, radial, perforated, laminar, or displacement) Supply Air: Temperature 50° F. to 63.5° F., and Velocity Ventilation Rate: 6 to 34.7 Air Changes per Hour (ACH) Hood Face Velocity: 50 fpm and 100 fpm Heat Source (chamber): 5.16 watt/ft² to 12 watt/ft² Make-Up Air Position: Door crack and Transfer grill Make-Up Air Quantity: 0 CEM to 542 CEM Scientist in front of FH Presence or Absence Equipment in front FH Presence or Absence

Project Methodology for NIH Lab Hood Study

Computational Fluid Dynamics (CFD) is:

Computational – computer software to solve equations

Fluid – substances that cannot remain at rest under shearing stress

Dynamics – study of object in motion and forces involved. 1) Numerical work: Air Flow Modeling with CFD.

Equations represent fundamental physics of conservation of mass, momentum, & energy. Particle Tracking – The air flow conditions to which particles are subjected to are calculated using an Eulerian frame of reference.

Post-Process Analysis

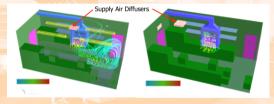
2) Empirical Work - Validation of FH on site

3) Validation Procedure - Over 13M experimental measurements were collected to confirm the methodology and results of the numerical work.

Improving Chemical Hood Safety

Containment Analysis of NIH Study - Hood Leakage Diagrams of Experimental Test Set-up

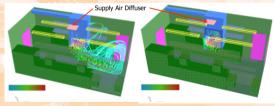
Containment Analysis of NIH Study - Hood Leakage


- Chemical hood is filled with tracer gas (SF₆). <u>Outward flow</u> of tracer gas is measured twice and assessed
- 1) From the face of the hood sash into the working zone box AND
- From the working zone box <u>into the laboratory</u>, away from the chemical hood and into workers' breathing zone.
- Industrial Hygienists can use Sash Leakage Factor (SLF) to calculate the actual leakage given a known source & rate of contaminant generated in the chemical hood.

Improving Chemical Hood Safety

Containment Analysis of NIH Study - Hood Leakage

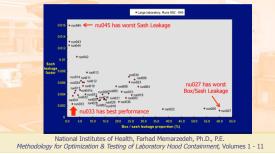
Diagrams of COMPUTATIONAL Test Set-up #1 of SA Diffusers



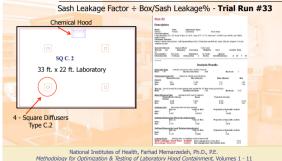
Improving Chemical Hood Safety

Containment Analysis of NIH Study - Hood Leakage

Diagrams of COMPUTATIONAL Test Set-up #3 of SA Diffusers



Containment Analysis of NIH Study - Hood Leakage


- SASH LEAKAGE FACTOR (SLF) is the concentration, as a fraction of the hood flow, that leaks outwards, against the flow and out of the hood sash opening into the working zone or box.
- BOX LEAKAGE FACTOR (BLF) is the concentration, as a percent of the hood flow out through all 5 faces of the box into the laboratory, away from the chemical hood.
- BOX/SASH LEAKAGE FACTOR is BLF ÷ SLF = percent measurement of the hood's ability to scavenge the working zone to retrieve contaminants leaked through the sash opening by other actions (i.e. motion of the scientist working at the sash, or fluctuation in the ventilations system, or a person passing by the front of the chemical hood).

Sash Leakage Factor + Box/Sash Leakage Proportion

Exposure Assessment on Fume Hood – Test 3.2

Exposure Assessment on Fume Hood – Test 7.1

Improving Chemical Hood Testing - ASHRAE / ANSI Standard 110-1995 vs.

NIH Laboratory Fume Hood Specifications & Performance Test Requirements, 2012

ASHRAE/ANSI Std 110

NIH Lab FH Performance Test, 2012

Qualitative test No standard for pass/fail Real conditions ignored No dynamic challenge Quantitative test

Value standards for pass/fail

Real conditions simulated

- Items within FH chamber
- Items on benches in lab
 Heat sources on benches

Dynamic challenge - walk-by

AGENDA

Introduction to Disabilities Identifying Hazards & Evaluating Risks in Labs Access to and within Laboratories and Egress Improving Chemical Hood Safety & Testing Recommendations Appendices

RECOMMENDATIONS -

Principal Investigators, Lab Managers, Scientific Director

- Require Hazard Identification Process
 - For the entire laboratory, all workers & tasks
 - For functionally limited lab workers & their specific tasks
 - Include ergonomic analyses for all workers
- Require Risk Analyses for all experiments
- Support Compliance to laboratory with 2010 ADA Standards Accessible Design, Dept. of Justice, September 15, 2010
- Seek safety, IH, & engineering expertise for selection of chemical hoods and testing protocols, and changes in lab.

American Chemical Society, Division of Chemical Health & Safety, Session 8, Janet Baum, AIA Americans with Disabilities Act & Accommodations in the Laboratory, ID 2513454

RECOMMENDATIONS -

Laboratory Health and Safety Professionals

- Promote and conduct further research on chemical hoods to improve containment & safe operations of FH
 - Promote and conduct further research on operating procedures commonly performed in chemical hoods and improve operators' compliance with safe standards.
- Address safe FH specific performance considerations for persons with disabilities who operate hoods.
- Cooperate with and contribute to work of FH testing agencies to develop more accurate, quantitative, sciencebased FH testing procedures.

American Chemical Society, Division of Chemical Health & Safety, Session 7, Janet Baum, AIA Americans with Disabilities Act & Accommodations in the Laboratory, ID 2513454 Laboratory Health & Safety Considerations for Persons with Disabilities

Health & Safety Considerations for Persons who Have Functional Limitations & Work in Laboratories THANK YOU FOR YOUR ATTENTION. QUESTIONS?

Janet Baum, AIA, DivCHAS

baum.janet@gmail.com Program Co-Director and Instructor Harvard University, T.H. Chan School of Public Health