Graduate student perspective on the ACS online tool *Hazard Assessment in Research Laboratories*

Kendra Leahy Denlinger 253rd ACS National Meeting in San Francisco Tuesday, April 4, 2017

Safety in the laboratory requires a full team effort to be successful. When everyone in the laboratory understands how to identify hazards, assess risk, and select the appropriate control measures to eliminate a hazard or minimize risk, accidents, injuries and near misses can be reduced.

https://www.acs.org/hazardassessment

Hazard vs. Risk

KNOW THE DIFFERENCE BETWEEN A HAZARD AND A RISK

"Hazard" and "risk" are NOT the same.

Hazard

- A hazard causes harm.
- A hazard can be eliminated, but not reduced.

Risk

- Risk is the probability that a hazard will cause harm.
- Risk associated with a hazard can be reduced.

Risk = hazard x exposure

Risk = hazard x exposure

- Chemical
- Electrical
- Ergonomics
- Excavation
- Fall
- Fire/Heat
- Mechanical

- Noise
- Radiation
- Struck By
- Struck Against
- Temperature Extreme
- Visibility
- Weather

Risk = hazard x exposure

Isolation

Reduce or remove hazards by separation in time or space. (May be particularly helpful in a shared lab space where different types of chemicals are being used.)

Enclosure

Place the material or process in a closed system.

Transportation

Move hazardous materials where fewer workers are present.

Guarding and shielding

Install guards to provide protection from moving parts or electrical connections.

Shielding provides protection from potential explosions

Ventilation

Use fume hoods, fans, air ducts and air filters.

Eye goggles, hearing protection, and protective clothing (e.g., lab coats and gloves) are the most recognizable and most used <u>PPE</u> in the lab.

Determine the Scope

Collect Appropriate Background Information

The analysis team will need appropriate background information, including:

- Equipment diagrams
- A list describing common hazards associated with chemicals and gases
- A list of the equipment's chemical and gas compositions, operating pressures, flow rates, run times, and other applicable parameters
- Potential health and physical hazards of equipment (e.g., ionizing or nonionizing radiation, high temperature, high voltage, or mechanical pinch points)
- Equipment safety features (e.g., interlocks)
- Physical access to equipment, as necessary/possible

Safety Data Sheets can include a lot of this information.

Assemble Your Team

Assemble Your Team

Everyone should be involved in hazard assessment, regardless of experience level or title in the lab.

Everyone is responsible for familiarizing themselves with appropriate controls for the hazards discovered in the lab.

Everyone is responsible for participating in hazard analyses (checklists, Job Hazard Analysis, and What-if Analysis) and the updating of the lab's Standard Operating Procedures. This is also a good time to review accidents, incidents, and near misses and collectively brainstorm ways to prevent these events in the future.

More experienced members of the team should lead risk assessment activities and assign risk ratings to the materials and processes in your lab.

Learn about the roles and responsibilities of various people in the lab.

Assemble Your Team

- Promote a laboratory culture where safety is a valued component of research;
- Analyze proposed work tasks to identify hazards and determine the appropriate controls (engineering, administrative, and PPE) needed to sufficiently mitigate the hazards;
- Seek ways to make hazard analysis an integrated part of the research process, so that it becomes a natural part of the process;
- Include the researchers who will be performing the work in the hazard analysis process;
- Ensure the hazards and controls are clearly communicated and understood by those performing the task;

Pl's job:

- Set the expectation that participation in the research project is contingent on an individual contributor's willingness to abide by the controls established through the hazard analysis process;
- Reach out to support personnel and subject matter experts for assistance, as needed, and defer to their
 expertise regardless of their position on the research team or within the organization (e.g., junior staff
 members or safety professionals);
- Meet with research staff on a regular basis and lead by example;
- Engage in the daily operations of the laboratory and be available, as needed, to ensure workers are performing in accordance with the agreed upon controls;
- Use lessons learned from abnormal events inside and outside the research group to improve planning;
- Solicit feedback from coworkers and colleagues to improve safety and the process;
- Address risks faced by visitors, including maintenance staff, during the hazard analysis process;
- Manage change control carefully by routinely reviewing procedures and the hazard analysis to identify changes; and
- Ensure training is appropriate, effective, and documented.

Use lessons learned

Mack Lab Safety Form for Ordering Toxic Chemicals

It is mandatory to fill out this form if the chemical you are ordering is labeled with <u>any</u> of the following HCS Pictograms:

For each of the human
here using the table b
obtained from the MS
sources
sources.

Hazard Statement	LD ₅₀	H319 H335
		H361
		H371
		H372
		H410
What alternativ for this chemica	es to t 1?	

Causes serious eye irritation. May cause respiratory irritation. Suspected of damaging fertility or the unborn child. May cause damage to organs (Nervous system) if swallowed. Causes damage to organs (Kidney) through prolonged or repeated exposure if swallowed. Very toxic to aquatic life with long lasting effects.

Now that the possible consequences of using this chemical have been described, please explain how the benefits to your research outweigh the potential costs to our health.

https://ehs.unl.edu/sop/s-health_hazards_haz_assessment_risk_min.pdf

Conducting a Hazard Assessment

Identify hazards \rightarrow Analyze risks \rightarrow Select controls

Ways to Conduct a Hazard Assessment								
Hazard Ass	essment	Fundamentals	Ways to Conduct Ass	sessments				
What-if Analysis	Job Hazard Analysis	Checklists	Standard Operating Procedures	Control Banding				

How to Conduct a Job Hazard Analysis

1. Involve people working in the lab.

The JHA should be developed in collaboration with the people performing the work from the beginning. Involving researchers in the process helps to minimize oversights. (People on the "frontline" have the best understanding of their processes.)

2. Review accident history and literature.

Key items to review include related accidents and illnesses, losses that required repair or replacement, and near-misses.

3. Conduct a preliminary review.

Review current tasks and conditions weekly. Brainstorm ideas to eliminate or mitigate hazards. Stop work if immediately dangerous to life or health (IDLH) hazards are uncovered during the review. Work must cease until proper controls can be implemented to protect the workers.

4. List, rank, and set priorities.

Research that involves hazards with unacceptable risks (based on high probability of occurrence and severity of consequence) should take top priority for analysis.

Risk is the probability that a hazard will result in an adverse consequence. Assessing risk helps to determine the proper mitigation strategy and priorities. Risk ratings and scaling can show where additional resources are

required.

5. Assign risk.

Assigning numerical values to risk must be done by individuals with a thorough knowledge of the hazard.

Calculate Risks Using Probability of Occurrence and Severity of Consequences Scaling

Many risk assessments use "probability of occurrence" and "severity of consequences" scales to rate risks associated with laboratory experiments. They are comprehensive assessment tools and provide greater differentiation of risks based on actual laboratory operations.

Using this kind of scaling, laboratory hazard risk rating is calculated as follows:

Risk Rating (RR) = Probability of Occurrence (OV) x Severity of Consequences Value (CV)

As the formula indicates, the higher the assessed probability of occurrence and severity of consequences, the greater the risk rating will be.

Probability of Occurrence with Standard Linear Scaling

Occurrence Value (OV)			Probability of Occurrence		
Rating	Value	Percent	Description		
Not Present	0	0%	Item/operation is not present in laboratory.		
Rare	1	1-10%	Rare		
Possible	2	10-50%	Possible		
Likely	3	50-90%	Likely		
Almost Certain to Certain	4	90-100%	Almost Certain to Certain		

Risk Rating (RR) = Probability of Occurrence (OV) x Severity of Consequences Value (CV)

Severity of Consequences, Weighted Value Scale

Consequ Value (ence CV)	Impact to						
Rating	Value	Personnel Safety	Resources	Work Performance	Property Damage	Reputation		
No Risk	1	No injuries	No impact	No delays	Minor	No impact		
Minor	5	Minor injuries	Moderate impact	Modest delays	Moderate	Potential damage		
Moderate	10	Moderate to life impacting injuries	Additional resources required	Significant delays	Substantial	Damaged		
High	20	Life threatening injuries from single exposure	Institutional resources required	Major operational disruptions	Severe	Loss of confidence		

Risk Rating (RR) = Probability of Occurrence (OV) x Severity of Consequences Value (CV)

Probability of Occurrence with Standard Linear Scaling

Occurrence Value (OV)			Probability of Occurrence		
Rating	Value	Percent	Description		
Not Present	0	0%	Item/operation is not present in laboratory.		
Rare	1	1-10%	Rare		
Possible	2	10-50%	Possible		
Likely	3	50-90%	Likely		
Almost Certain to Certain	4	90-100%	Almost Certain to Certain		

Severity of Consequences, Standard Linear Scaling

Consequen (CV)	ce Value)	Impact to					
Rating	Value	Personnel Safety Resources Work Performance		Property Damage	Reputation		
No Risk	1	No injuries	No Impact	No Delays	Minor	No impact	
Minor	2	Minor injuries	Moderate impact	Modest Delays	Moderate	Potential damage	
Moderate	3	Moderate to life impacting injuries	Additional resources required	Significant delays	Substantial	Damaged	
High	4	Life threatening injuries from single exposure	Institutional resources required	Major operational disruptions	Severe	Loss of Confidence	

high probability x no consequences = 4 low probability x life threatening consequences = 4

Probability of Occurrence with Standard Linear Scaling

Occurrence Value (OV)			Probability of Occurrence		
Rating	Value	Percent	Description		
Not Present	0	0%	Item/operation is not present in laboratory.		
Rare	1	1-10%	Rare		
Possible	2	10-50%	Possible		
Likely	3	50-90%	Likely		
Almost Certain to Certain	4	90-100%	Almost Certain to Certain		

Severity of Consequences, Weighted Value Scale

Consequ Value (ence CV)	Impact to						
Rating	Value	Personnel Safety	Resources	Work Performance	Property Damage	Reputation		
No Risk	1	No injuries	No impact	No delays	Minor	No impact		
Minor	5	Minor injuries	Moderate impact	Modest delays	Moderate	Potential damage		
Moderate	10	Moderate to life impacting injuries	Additional resources required	Significant delays	Substantial	Damaged		
High	20	Life threatening injuries from single exposure	Institutional resources required	Major operational disruptions	Severe	Loss of confidence		

high probability x no consequences = 4 low probability x life threatening consequences = 20

Job Hazard Analysis									
Job Location: Rieveschl H	all, UC La	aboratory (Froup: Mack Date	: 03/14/2017					
Activity or Job	Run oxidation experiment								
Completed By	Kendra								
Equipment and Chemicals Required	Stainless stee pipette, rubb	el vial + cap er pipette b	, o-ring, stainless steel b oulb, metal spatula, benz	all, balance, ball mill, glass yl alcohol, PS-TEMPO, <u>Oxone</u>					
Work Steps and Tasks Describe the tasks or steps involved in the work in the order performed	Hazards Iden each Task/St	tified for ep	Risk Level Risk Nomogram can be used (see APPENDIX B)	Control/Safe Work Procedures for each Task/Step Controls to be implemented					
	Harmful if swallowed		1 x 5 = 5	Use PPE; discard contaminated gloves immediately; wash hand upon exiting lab					
Weigh out benzyl alcohol	Harmful if inhaled		2 x 5 = 10	Weigh under snorkel					
	Causes serious eye irritation		1 x 5 = 5	Use PPE; discard contaminated gloves immediately; wash hand upon exiting lab					
Weigh out PS-TEMPO	None (not a ł substance/i	nazardous mixture)	1 x 1 = 1	None					
Weigh aut Orang	Harmful if sv	wallowed	1 x 5 = 5	Use PPE; discard contaminated gloves immediately: wash hands					
weign out <u>Oxone</u>	Causes severe skin burns and eye damage		1 x 5 = 5	upon exiting lab					
Clamp vial in ball mill and start ball mill	Caught in b	oall mill	2 x 5 = 10	Use care when opening and closing the ball mill					
Hazards Checklist [Note: 7 Descriptions in APPENDI	This section car K D.]	n be modifi	ed, as needed. See Table	D-1: Common Hazards and					
Can someone be exposed to a	chemicals? Yes	If so, what Ingestion a	<i>is the nature of the chemic</i> and inhalation hazards; ey	<i>al hazard?</i> e and skin irritation					
Can someone slip, trip, or fai	l? Yes	Can someo	one injure someone else? Ye	S					
Can someone be caught in a	nything? Yes	Can someo Yes	one strike against or make o	contact with any physical hazards?					

Source: http://www.cdc.gov/niosh/topics/hierarchy

Elimination and Substitution

The San Destin Declaration: 9 Principles of Green Engineering*

 Engineer processes and products holistically, use systems analysis, and integrate environmental impact assessment tools.

Think about the amount of chemicals or potentially hazardous materials you are using. Can you reduce the amount and still achieve the desired result?

benign as possible.

5. Minimize depletion of natural resources.

. . . .

- 6. Strive to prevent waste.
- Develop and apply engineering solutions, while being cognizant of local geography, aspirations, and cultures.
- 8. Create engineering solutions beyond current or dominant technologies; improve, innovate, and invent (technologies) to achieve sustainability.
- 9. Actively engage communities and stakeholders in development of engineering solutions

*Abraham, M.; Nguyen, N. "Green engineering: Defining principles" – Results from the Sandestin conference. *Environmental Progress* **2004**, *22*, 233-236.DOI: 10.1002/ep.670220410

Source: ACS Green Chemistry Institute (GCI)

by EPA, NSF, DOE (Los Alamos National Lab), and the ACS GCI.

GSK Solvent Sustainability Guide

Water & Acids	Alcohols	Esters	Carbonates	Ketones	Aromatics	Hydro- carbons	Ethers	Dipolar aprotics	Chlorinated	
Water (100° C)	1-Heptanol (178°C) Ethylene glycol (197°C) 1-Octanol (195°C) 1-Butanol (118°C) 1-Propanol (97°C) Ethanol	Glycerol diacetate (187°C) Isobutyl acetate (116°C) Isoamyl acetate (142°C) Isopropyl acetate (89°C)	Propylene carbonate* (242°C) Diethyl carbonate* (126°C) Dimethyl carbonate (91°C)	Cyclo- pentanone (131°C) Methyl isobutyl ketone (117°C)	Anisole (154°C)					Few Issues
AcOH (118°C)	(78°C) 2-Propanol (82°C) f-Butanol (82°C) IMS (78°C) Methanol (65°C)	Ethyl acetate (77*C)		Methyl ethyl ketone (80°C) Acetone (56°C)	P-Xylene (138°C) P-Cymene" (177°C) Toluene (111°C) Trifluoro- Toluene (102°C)	Isooctane (99°C) Heptane (98°C) Cyclo- Hexane (81°C)	Dimethyl isosorbide* (236°C) CPME (106°C) 2-MeTHF*	DMSO (189°C) MeCN (82°C)		
TFA*					Pyridine Benzene	Hexane Petroleum Spirits	(78°C) TBME Diisopropyl ether THF 1,4-Dioxane Diethyl ether DME	NMP DMAc DMF	DCM DCE CHCI ₃ CCI4	Alder, C. e further ex Major solvent su Issues Green Ch

* The scoring assessment for this solvent includes 4 or more data gaps, therefore there is a lower level of confidence in the solvent's placement on this guide. Alder, C. et. al. "Updating and further expanding GSK's jor solvent sustainability guide." Green Chemistry, **2016**, 4, 1166-1169.

Tools

• Approach to establishing chemical safety levels [Word]

Summary

- Risk = hazard x exposure
- Determine scope (use SDS!)
- Assemble your team
- Conduct a hazard assessment
 - Assigning risk ratings
 - Job hazard analysis
- Select controls
- Green engineering principles
- Hazard assessment is an ongoing process

Acknowledgments

Adviser: Prof. James Mack

American Chemical Society:

- Ralph Stuart
- Marta Gmurczyk
- Mary Kirchhoff

Kendra Leahy Denlinger denlinkm@mail.uc.edu