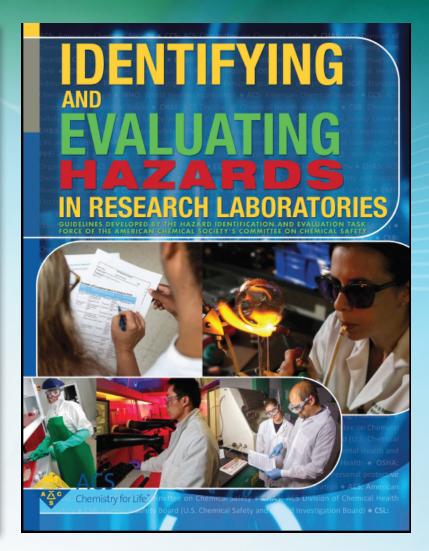
Integrating Hazard Identification and Risk Assessment into Course-based Undergraduate Research

Samuella B. Sigmann Dale E. Wheeler Appalachian State University Boone, NC April, 2017

Integrating Hazard Identification & Risk Assessment into the Curriculum


- Background Teaching safety beyond rules
- Course structure Inorganic Lab (CHE 3405)
- The independent research project Synthesize an acetylacetonate (2,4-pentanedione) / transition metal coordination compound
- Recognized opportunity Student engagement in safety
- Improvement Future directions
- Recognized opportunity Improving a CURE

Teaching Hazard Identification & Risk Assessment

Background

The Chronology of This Journey

• 2012 – Work began on the ACS Publication Identifying and Evaluating Hazards in Research Laboratories¹

¹Hazard Assessment in Research Laboratories

 <u>2014</u> – Our department added a graded hazard identification and risk assessment assignment to our Capstone course – we used the "Job Hazard Analysis" (JHA)

➤A JHA, requires that students break their process into steps, identify hazards, estimate risk, implement controls to minimize risk, and indicate how to prepare for emergencies (RAMP)⁴

> ⁴Hill, R. H.; Finster, D. C. Laboratory Safety for Chemistry Students; John Wiley & Sons, Inc.: Hoboken, NJ, 2010; p 1-7.

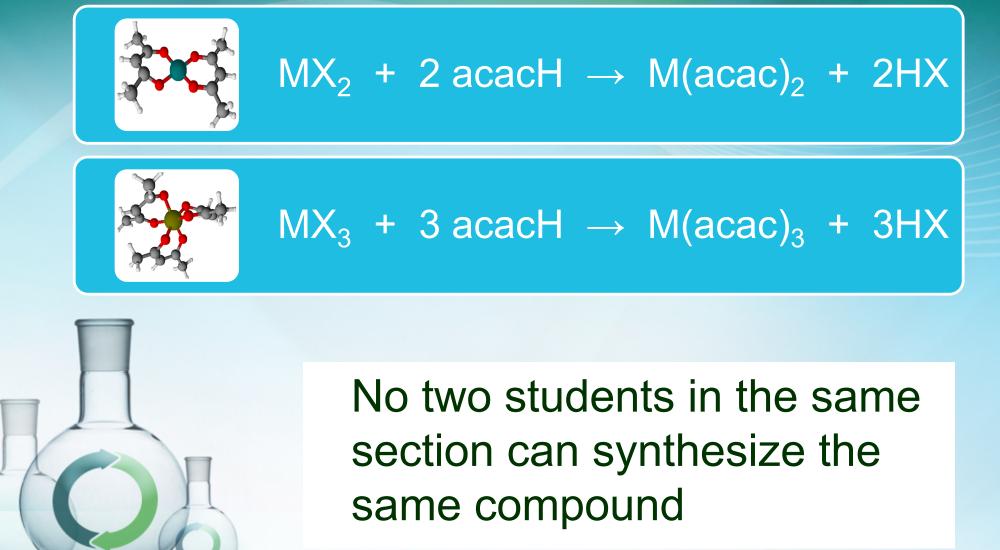
- <u>2016</u> We moved the assignment to our junior level "Introduction to Research" course (CHE 3000)
- <u>2016</u> The pedagogy used with the assessment results were published in the ACS Symposium Book Series – Integrating Library and Information Literacy into Chemistry Curricula²

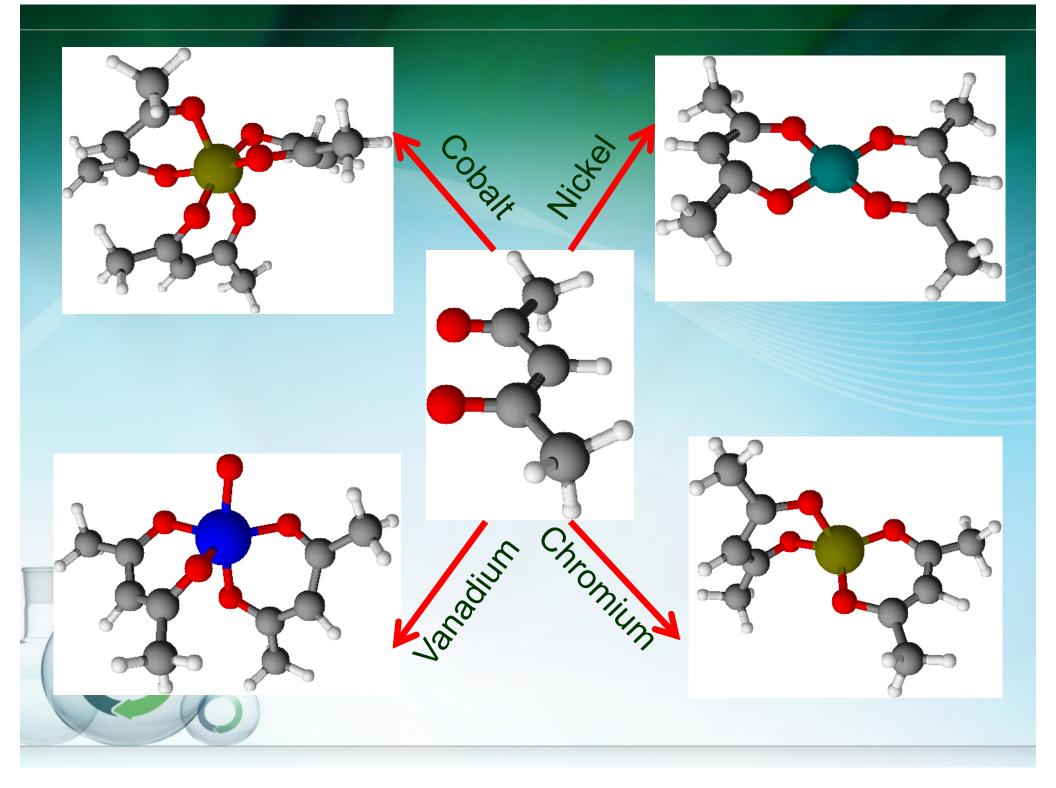
²Sigmann, S.B.; McEwen, L.R. Teaching Chemical Hygiene and Information Skills Using Risk Assessment. In *Integrating Library and Information Literacy into Chemistry Curricula*; Lovitt, C.F.; Shuyler, K.; Li, Y, Eds; ACS Symposium Series; American Chemical Society: Washington DC, 2016; 1232, pp 57–92.

Inorganic Laboratory (CHE 3405)

Course structure

Inorganic Lab CHE 3405 Course Structure


- Fifteen week semester w/ exam week
- There were two sections of 8 or 9 students
 in F16
- Typical inorganic synthesis methods taught based on ACS guidelines³ (synthesis, purification, characterization)
- Additionally There is an embedded, student driven, three week independent synthesis project that is ~40% of the grade


³ACS CPT Inorganic Chemistry Supplement (2015)

Synthesis of a M(acac)_x Complex

The Independent Research Project

General Synthesis Reaction

The Project Outline – Library Assignment

- Literature Search Use SciFinder, students must research aceylacetonate (structure, IUPAC name, CAS#, homoleptic definition, sources which describe synthesis of any metal compound with this ligand)
- Students must reference *primary* literature (no lab manuals, etc.)

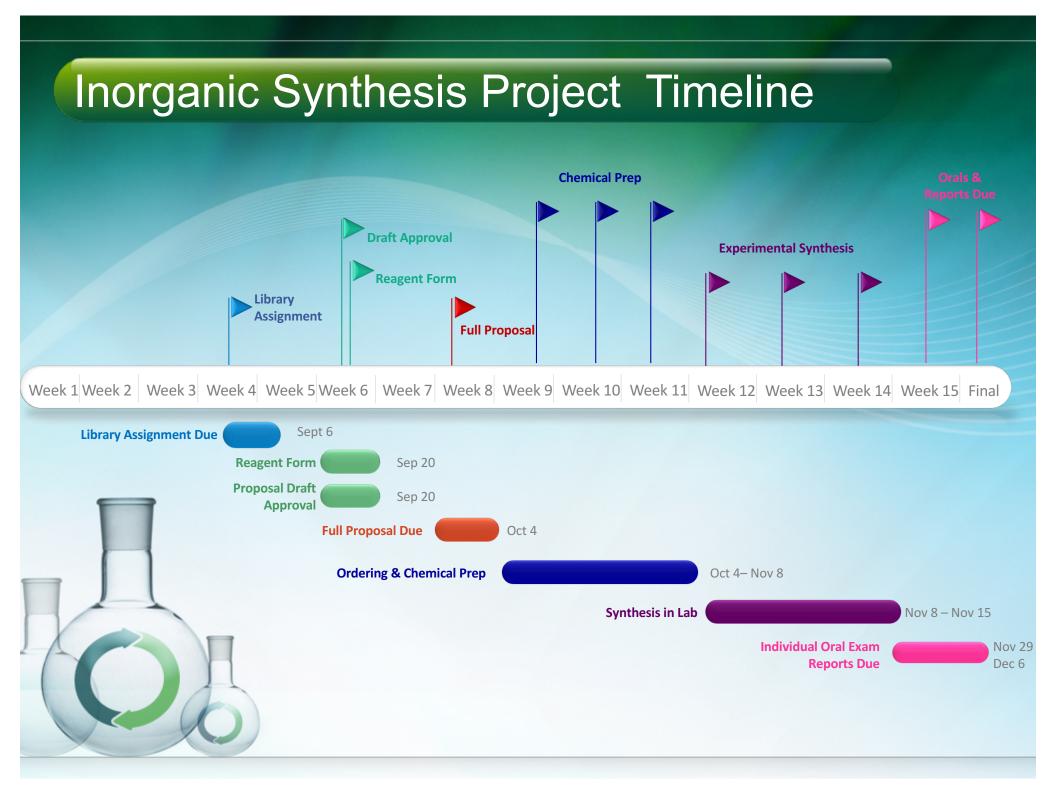
The Project Outline – Reagent Form

- <u>Approved Reagent Form</u> this ensures that the synthesis produces enough compound to characterize, but not a huge excess of waste
- Additionally, this assignment ensures that reagents are available in the stockroom
- An added benefit is that students learn to navigate the university inventory system when determining availability of chemicals
- Information required: compound to synthesize, theoretical yield (1-5 g), all reagents needed with amounts (from literature)

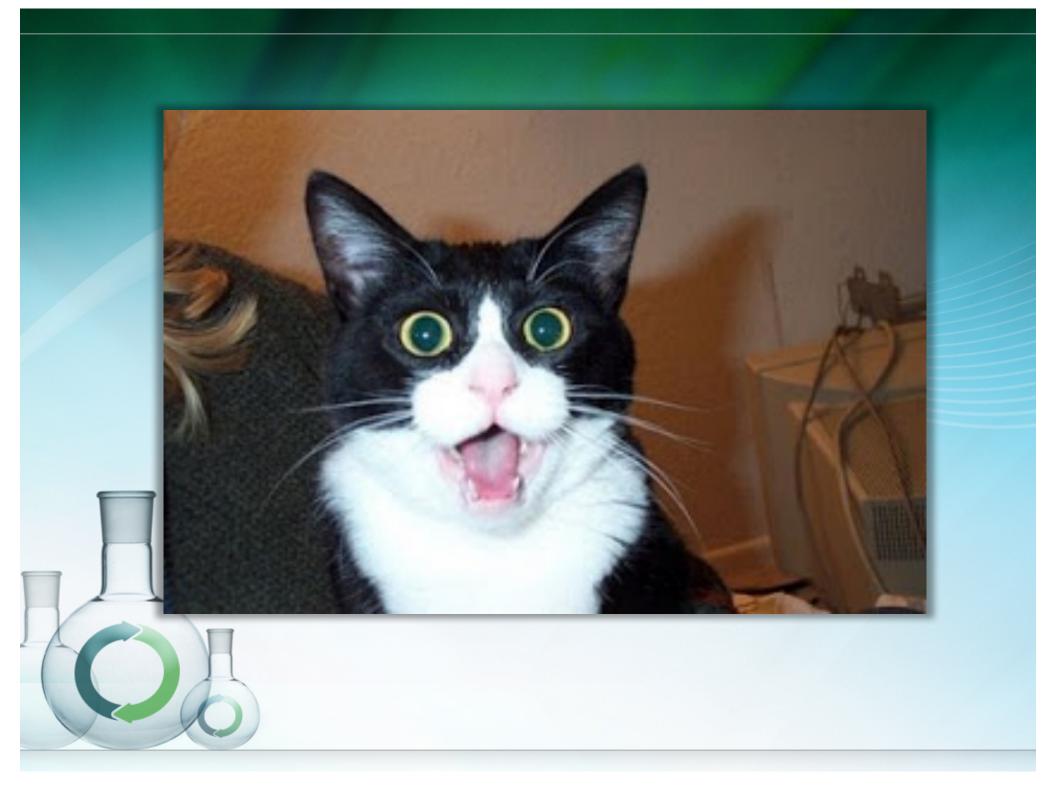
The Project Outline – Reagent Form

Name_____ Compound to Synthesize_____

Theoretical Yield in Grams (must be between 1-5 grams unless previously approved by instructor – note that you may have to adjust amounts for this form)


All reagents needed except water must be listed on this form (remember that solvents are reagents). You must list the amount you need for your calculated theoretical yield. Do not, for example, list "acetone – enough to dissolve".

This form must be completed and signed by the CHE 3405 Instructor and the Stockroom Manager by the deadline listed in your syllabus. The CHE 3405 Instructor should sign the form first.


	Reagent (grade/purity)	CAS Number	Amount
A A			
6			

The Project Outline – Additional Components

- <u>Research Proposal Outline</u> This document includes the title page, abstract, introduction, experimental section, expected results, and primary references
- Formal Research Proposal Based on approved outline
- <u>Research Paper</u> Submitted in ACS research paper format
- <u>An Oral Presentation</u> (course exam) One on one with the instructor

Student Engagement in Safety Recognized Opportunity

Chemical Hazards – Metal Compounds

Compley	CAS	Formula	8 hour TWA
Complex	CAS	rvimula	or Ceiling
cobalt(II) carbonate	57454-67-8	$CoCO_3 \cdot xH_2O$	0.02 mg/m ³
palladium(II) chloride	7647-10-1	PdCl ₂	No Data
aluminum sulfate octadecahydrate	7784-31-8	$AI_2(SO_4)_3 \cdot 18H_2O$	2 mg/m ³
chromium(III) chloride	10025-73-7	CrCl ₃	0.5 mg/m ³
copper(II) sulfate pentahydrate	7758-99-8	$CuSO_4 \cdot 5H_2O$	1 mg/m ³
nickel(II) nitrate hexahydrate	13478-00-7	$Ni(NO_3)_3 \cdot 6H_2O$	0.015 mg/m ³
	10470 00 7		0.10 mg/m ³
iron(III) chloride hexahydrate	10025-77-1	$FeCl_3 \cdot 6H_2O$	1.0 mg/m ³
vanadium(IV) oxide sulfate hydrate	123334-20-3	$VOSO_4 \cdot xH_2O$	0.050 mg/m ³ *
mercury(II) oxide	21908-53-2	HgO	0.025 mg/m ³
yttrium(III) nitrate hexahydrate	13494-98-9	$Y(NO_3)_3 \cdot 6H_2O$	1.0 mg/m ³
potassium permanganate	7722-64-7	KMnO ₄	0.2 mg/m ³

NIOSH*Ceiling

ACGIH TLV

Chemical Hazards – Acetyl Acetone

BP 138 deg C FP 34 deg C (Closed cup)

Incompatible with oxidizing materials Flashback along vapor trail may occur

Above 34 deg C explosive vapor/air mixtures may be formed.

LD50 rabbit values (1370 (male), 790 (female), and 4870mg/kg bw),

LC50 (rat) = 1224ppm/4h

Odor Threshold 0.010 ppm

Warning

Danger

Vapor irritating to eyes. Liquid irritating to skin and eyes.

May cause damage to organs through prolonged or repeated exposure (central nervous system, thymus)

Warning

The Project Outline – Risk Assessment

"Hey, these guys learned how to do a risk assessment in CHE 3000.

Let's have them prepare a JHA for their independent project!"

Inorganic Synthesis Project New Timeline **Chemical Prep Risk Assessment Draft Approval Experimental Synthesis Reagent Form** Library Assignment **Full Proposal** Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Final Sept 6 Library Assignment Due **Reagent Form** Sep 20 **Proposal Draft** Sep 20 Approval **Full Proposal Due** Oct 4 **Ordering & Chemical Prep** Oct 4-Nov 8 **Risk Assessment** Oct 4-Nov 8 Synthesis in Lab Nov 8 – Nov 15 **Individual Oral Exam Nov 29 Reports Due** Dec 6

Risk Assessment Process Used F16

- JHA draft submitted
- Draft Evaluated
- Scheduled meetings with each student for discussion
- Discussion comments used to improve tool and improved JHA resubmitted
- Tool approval required prior to the start of the independent project

Work Steps and Tasks Describe the tasl steps involved in	sks / Hazards I		ds Identified ch Task / Step		Risk Le Risk Nomog can be	ram	Control / Safe Work Procedures for each / Step Controls to be						
work – in order Step 1: Weight 1.002 g of CrCl ₃ 6H ₂ O in 50- beaker	- mL		ition, s al cont		Modera		Weigh in dust hood Wear chemical splash googles and		cal les and kit on		Excerpts – Student JHAs		
		Dissolve (II) chloride in er (100 beaker) Dissolve tylacetone in thanol			Spilla skin conta Spilla skin conta flammat	age tact Moderate		minimiz the spit Carefu Same a open fl remove solvent	l movement as above, no				
				17: Pour waste organic Waste iner		Inhalation, dermal contact, spilling, improper mixing with nitric acid		illing, iixing	Moderate risk •		 be checked thoroughly before pouring in waste The instructor will be asked to insure that the appropriate waste container is used Both hands will be used during transfer 		

Hazards Recognized/Risk Reduced

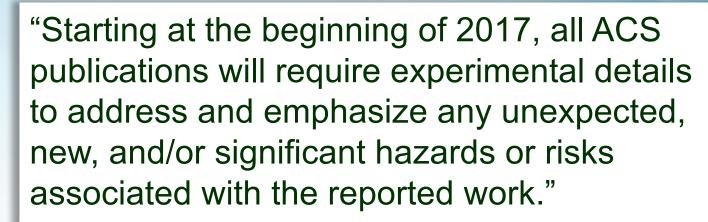
By working with the students we were able to very efficiently minimize hazards

- > All work was done on spill trays
- Physical hazards from chemicals and equipment identified
- All of the starting materials were manipulated in either a dust hood or fume hood
- Nitric acid/organic waste hazard was eliminated
- Correct glove material was identified
- Waste residues from the hazardous materials were minimized by eliminating transfers

Future directions – Iterate!

Improvement

Future Improvements – Reagent Form


Reagent (grade/purity)	CAS Number	Amount	
vanadium(IV) oxide sulfate hydrate (ACS or reagent)	123334-20-3	5 g	
2,4-pentanedione (distilled)	123-54-6	10 mL	
Acetone (lab grade, technical grade, or better)	67-64-1	200 mL	
d ₆ -acetone (99.9%)	666-52-4	1 mL	

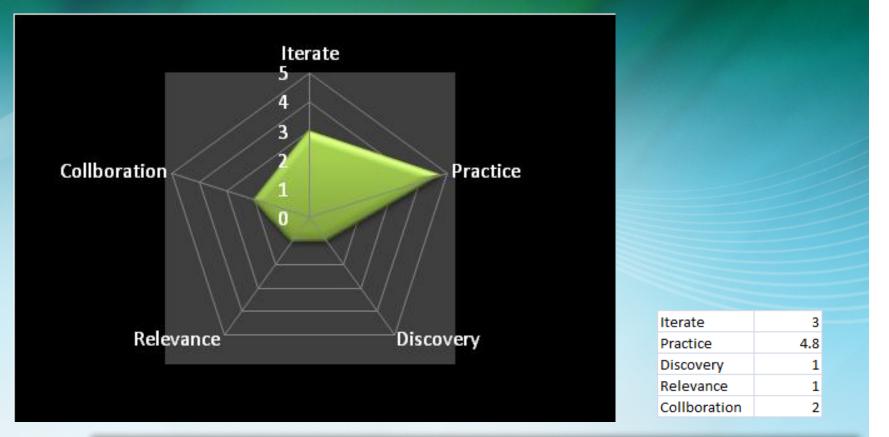
Most of the chemicals in the stockroom are ACS grade, but if you need something different, you can find an explanation of chemical grades at the following here:

http://www.reagents.com/products/grades-purity

Future Improvements – The Research Paper

From 3405 Course Syllabus In writing the proposal, follow the general format of a research paper published in *Inorganic Chemistry* or another of the journals published by the American Chemical Society.

Ingredients for a Positive Safety Culture DOI: 10.1021/acscentsci.6b00341


Improve a CURE - Teach Risk Assessment

Recognized Opportunity

Symposium Description

"...Course-based undergraduate research Experiences (CUREs) provide a powerful solution to these challenges by adapting laboratory curricula to a structured, but discovery-based focus. CUREs have been demonstrated to provide many of the same learning gains as traditional research experiences and provide significantly greater capacity for undergraduate research. This symposium explores successful models at all levels to help interested faculty develop and implement this practice that their home institutions."

CURE Aspects Met by Inorganic Research Project

Scientific Practices: Work includes aspects of the scientific method, resilience in research, and dissemination

Discovery: Finding new knowledge beyond what is known by either the students or instructor **Relevance:** The work strives for discoveries that are impactful to the discipline or science in general

Collaboration: Students work collaboratively

Iterative: Time is given for students to apply information in designing or improving experiments

Risk Assessment – Necessary in a CURE

- If a CURE is the only research a student participates in, it may be the only time a student has to learn how to *evaluate disparate chemical safety information*
- In laboratories where students are designing experiments and *discovery research* is happening, the hazards will be greater – especially if novel compounds are synthesized
- Increased complexity of operation increases risk in a teaching laboratory

Risk Assessment – Added Value for a CURE

The process of performing a risk assessment

- Embodies the pedagogy of Course-based Undergraduate Research
- Very likely increases each aspect of the five tenets of CURE (practice, iteration, discovery, relevance, and collaboration)
- Teaches critical thinking which is not skill, but a method by which we accommodate and assimilate knowledge
- Students begin to understand that safety is integral to the research process, not an added burden

Risk Assessment – Added Value for a CURE

When asked if the process was any "smoother" than previous years, Dr. Wheeler replied that while he was not sure from a safety standpoint, but that he did note that the students were much more organized than previous years

He attributed this to the students having to lay out the synthesis as a series of steps which forced them to critically think about the procedure as compared to just reading a procedure in a paper

Pedagogical Alignment of CUREs and Safety

Acknowledgements

- Dr. Dale Wheeler
- The A.R. Smith Department of Chemistry – Appalachian State University
- Dr. Rory Waterman and the CURE/Inquiry group (Cottrell Scholars & Research Corporation for Science Advancement)
- The American Chemical Society