Chemical Information Necessary to Establish Laboratory Ventilation Control Bands

Ellen Sweet, MS, CCHO Cornell University August, 2017

Cornell University Environmental Health and Safety

Outline

- Environmental Health and Safety Programs
- The Laboratory Ventilation Management Plan
- Chemical Hazards of Concern
- Where does this information come from? (Information flow in EHS)
- Ventilation Risk Assessment (Laboratory Layout, Engineering Options)
- Communications

EHS Lab Safety Programs

- Expectation for ensuring health and safety of lab workers
 - provide guidance and oversight
- Leading indicators:
 - fewer health and safety questions
 - lessening of antagonistic relationships with stakeholders
- Lagging indicators:
 - lower number of corrective actions from lab inspections
 - lower frequency of common types of incidents

The Laboratory Ventilation Management Plan (LVMP)

An LVMP outlines the decisions for what the goals are, parameters to work within, documentation and communications

- Roles and responsibilities of stakeholders
- Describes tasks (fume hood inspections) and Standard Operating Procedures
- Establishes acceptance criteria
- Indicators (leading and lagging) and where this information comes from
- Can establish general ventilation rates

Ventilation Priorities

- Chemicals- Airborne, inhalation hazards and maintenance of proper oxygen levels
- Animal Health- Removal of airborne contaminants, such as ammonia, and odors
- Human Comfort- Removal of airborne contaminants and odors

Risk Assessment Process- Chemical Risks

- Concentration- impacts toxicity, sensitization, and odor concerns
- Quantity- small quantities (100ml of volatile chemical) or large volumes (several liters on the bench)
- Location of use- in the fume hood or on the bench
 - Potential for airborne emissions in occupied areas of the laboratories
- Availability and proper use of local exhaust

Control Banding Lab General Ventilation Rates

Control banding is a generic protection strategy that groups similar hazards

- then apply the same protection strategies

Banding Chemicals Using Globally Harmonized System (GHS)

Design-to 8/4 ACH

Hazard Code	Hazard Statement	
H224	Extremely flammable liquid and vapor	<
H225	Highly flammable liquid and vapor	
H226	Flammable liquid and vapor	•
H304	May be fatal if swallowed and enters airways	
H330	Fatal if inhaled	
H331	Toxic if inhaled	
H332	Harmful if inhaled	

Banding Chemicals Using Globally Harmonized System (GHS)

<u>6/3 ACH</u>

Hazard Code	Hazard Statement
H334	May cause allergy or asthma symptoms or breathing difficulties inhaled
H335	May cause respiratory irritation

General Ventilation Control Band	Drivers for this Recommendation
Normal ventilation	High intensity laboratory chemical use
Moderate ventilation	Volatile or toxic chemical used that are restricted to local exhaust areas; no significant sources on bench top
Low ventilation	Instrument labs and other spaces with intermittent sources that require once through ventilation, but have no significant chemical sources
Lab-specific ventilation	Based on biosafety considerations; make up air concerns; temperature concerns; clean rooms

Information Sources

- Chemical inventories (lab visit, request during renovations)
- Hood Housekeeping Score (HHS)
- Hazard Assessment Signage Program
- Lab Inspections
 - lab housekeeping
 - types of corrective actions
- Field Testing

Laboratory Layout and Modeling Airflow Patterns

Testing Airflow Patterns

Location of	EGG111	RAE 1	EGG122	EGG 123	RAE 4	RAE 6	RAE 3	RAE 2	RAE 5	EGG121	
sensor											
Number of	595	592	534	591	551	613	592	613	613	803	
data points											
Observed	8.53	8.13	8.83	8.67	8.70	8.05	8.20	8.06	8.06	4.93	per hour
r-squared	0.99	0.99	0.97	0.98	0.99	0.99	0.99	0.99	0.99	1.00	
Concentrati	4.87	5.11	4.71	4.80	4.78	5.17	5.07	5.16	5.16	8.43	minutes
on half life											

Testing Engineering Options

Sampling for xylene following complaint of headaches

Sample Location	Agent	Result	Туре	OEL	Reference
Thermoscientific Clearvue	Xylene	1.4 ppm	TWA	100ppm	OSHA
Varistain Gemini	Xylene	0.47 ppm	TWA	100ppm	OSHA
Personal Air Sample	Xylene	BDL*	STEL (15 minutes)	150ppm	ACGIH
Cover Slipping Station ⁺	Xylene	2.1 ppm	TWA	100ppm	OSHA
Personal Sample – Technician ⁺	Xylene	0.72 ppm	TWA	100ppm	OSHA
H&E Stain +	Xylene	0.86 ppm	TWA	100ppm	OSHA
Personal Sample – Student/Intern ⁺	Xylene	1.6 ppm	TWA	100ppm	OSHA
Personal Sample – Technician ⁺	Xylene	0.75 ppm	TWA	100ppm	OSHA
Solvent Recycler *	Xylene	0.92 ppm	TWA	100ppm	OSHA
Automated Slip Cover ⁺	Xylene	7.1 ppm	TWA	100ppm	OSHA

Testing Engineering Options

Testing Engineering Options

EHS Communication Methods

Certified Green Labs-

Contact	Name	Campus Address	Day Phone	Night Phone	
PI/Supervisor	Edward Evans	377 Pine Tree Road	+1 (607)	(607)	
	(ece22)		\$\$2-3736	555-0002	
Secondary	Alan Bitar (apb33)	395 Pine Tree Read, suite 210	+1 (607) 592-8103)687) 555-0001	
DSR	Brenda Coolhaugh (blo32)	Suite 210, East Hill Office Building	+1 (607) 254-5085	(607) 555-0000	
Bldg Coord	Krista D. Tagliavento (KDT1)	Environmental Health & Safety, Room 101	607/254-1631		
Access Limi	itations				
Escorted Vis	sitors				
Operators as	d Staff Only				
Area Hazar	da				
MOTERATE	BSL - 2				
- Cast			Explosive	7KL84	
Warnings					
Eye protecti	on required who	n using hazardous chen	nicals .		
Eating and drinking prohibited					
Emergency Response					
In case of emergency, call for assistance by dialing 911					
Storage Room for Oas Cylinders					
Audit Info					

ACH Rates and EHS contact information

Fume Hood Communication Methods

Hood Hibernation Poster

Shut the Sash Smiley ... coming soon

Biotechnology New Ductwork Design

Lowering ventilation

- Capital project to redesign layout and achieve better laminar flow
- Chemical cleanout
- Green chemistry principles- substitution
- Green labs
- Connection to ventilation

Information Flow in EHS

When conducting an assessment of a laboratory in order to identify hazards to be controlled by dilution or local ventilation, there are multiple sources of information. The chemicals of concern, obtained from an inventory, and the general layout of the laboratory can be described in the Laboratory Ventilation Management Plan. Other sources that inform the assessment process require a visit to the lab, a look into the research the group is conducting which may require a conversation with someone responsible for the lab, and the management of the lab and occupants. This is similar to the manner that laboratory inspections are conducted. In this presentation, I will discuss the types and sources of chemical information that can be used and the methodology behind establishing ventilation control bands based on this information.