

Reaction Incident Information

Engaging the community in collecting and sharing safety learnings

2017 Spring ACS Meeting CHAS Division Symposium: Information Flow in Environmental Health and Safety (CHAS 32)

Carmen Nitsche, Gabrielle Whittick, Mark Manfredi

April 4, 2017

Safety must be a priority

Safety is hard

- When things go wrong, we tend to blame the individual
- In reality systemic, process weaknesses contribute to failure
- What is obvious to you may not be to others
- Just because nothing bad happened does not mean it was safe

To cultivate safety culture

- Focus on prevention
- Examine systems and processes
- All levels must be involved
- Reward sharing
- Promote institutional knowledge retention

The Drivers for the Chemical Safety Library (CSL)

- Accidents and nearmisses happen every day
- Prevention depends on knowledge of what has happened before
- Our colleagues are often our best teachers
- No one wants to get hurt in the lab

- Difficult to find real-life insights
- Data is scattered in silos
- Lessons learned are often forgotten
- Even reported incidents are not readily discoverable

The Drivers for the Chemical Safety Library

Accidents and near-

• Difficult to find real-life

miss

day

Ideal opportunity for

Pre

kno

hap

our

Ou

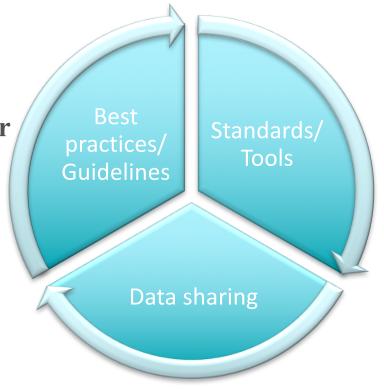
cross-industry collaboration and cooperation

red in silos ned are

en

d incidents

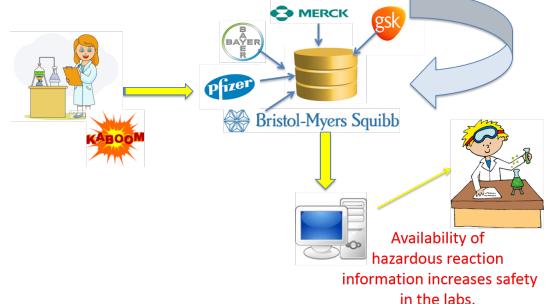
 No one wants to get hurt in the lab


The Pistoia Alliance: Who we are & what we do

• A global, **not-for-profit 501**(c)(6) alliance of life science companies, technology vendors, publishers, and academic groups.

Dedicated to improving life sciences R&D innovation and effectiveness through precompetitive collaborative projects and other activities

Offer a proven framework for open innovation & collaboration



Chemical Safety Library: goal & value proposition

The Pistoia Alliance *Chemical Safety Library* project will capture and share previously <u>inaccessible reaction incident</u>

information.

Making this data available to the chemical community at large will allow organizations to learn and avoid reaction incidents experienced by the wider community, enhancing overall laboratory safety.

Project progression

BMS brings project idea to the Pistoia Alliance mid-2015

Project team forms in late 2015

• Publicized via IP3, conferences, personal communication

• Project team defines data model and begins collecting data

ACS offers C&ENews Safety Letters content for inclusion

• BIOVIA builds the prototype service Fall 2016

Testing completed February 2017

CSL prototype releases to public March 14, 2017

What resources are used today?

- Various substance-based reference sources
- Material Safety Data Sheets (MSDS)
- Scientific literature
- Personal knowledge and experience
- Laboratory Chemical Safety Summaries (LCSS)
 - <u>https://pubchem.ncbi.nlm.nih.gov/lcss/</u>
 - Collaboration between
 PubChem and <u>ACS-CHAS</u>,
 <u>ACS-CINF</u> and the <u>ACS-CCS</u>

Source Name	Total
Bretherick's	13
MSDS *	6
Employee Knowledge	5
SciFinder	4
ACS + Journals	2
Sax's Dangerous properties	2
Vendor SDS *	2
CAMEO	1
Chemwatch SDS *	1
Google	1

What resources are used today?

Various substance-based reference sources

	reterepeo	COUTOOC			
					Total
	Mat	Reagent/su	ıbstance		13
	(MS				6
•	Scie	safety data	sources		5
•	Pers	abou	nd		4
	exp	about			2
•	Lab			erties	2
	Sun	Not on for r	coetions		2
	- h	Not so for r		1	
	gov/ics	S/			1
		oration between	Google		1

Collaboration between
 PubChem and <u>ACS-CHAS</u>,
 <u>ACS-CINF</u> and the <u>ACS-CCS</u>

Creating the prototype service

Requirements

- Build simple service to validate premise:
 community is willing to share incident info
- Make sure data is movable and reusable
- Implement features that simplify curation and oversight
- Leverage existing reagent info during data entry process

Execution

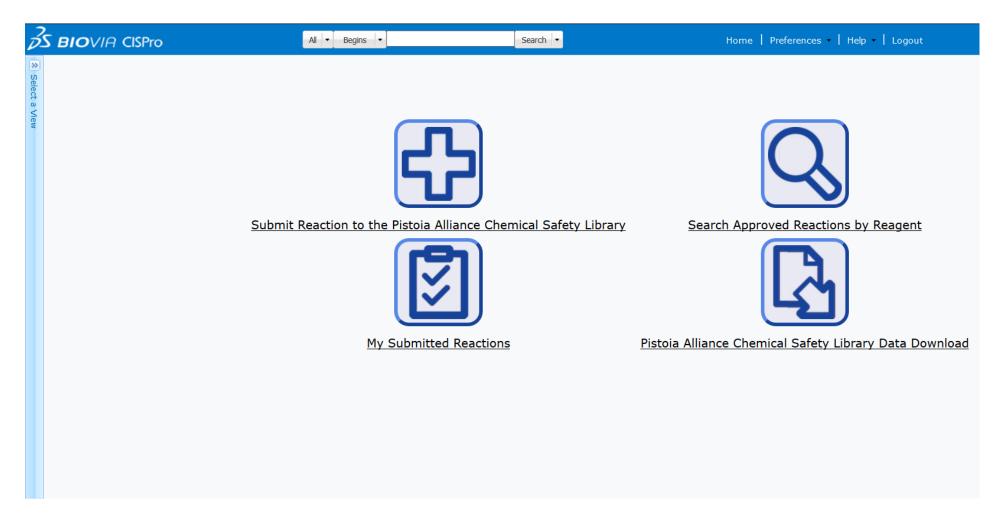
- Based on BIOVIA CISPro
- Takes 3 minutes to enter an incident
- Has basic search capability for incidents by reagent
- Full set of data available as csv (by reagent)
- Registration required
- Sigma Aldrich reagent data preloaded to simplify user data entry

CSL prototype

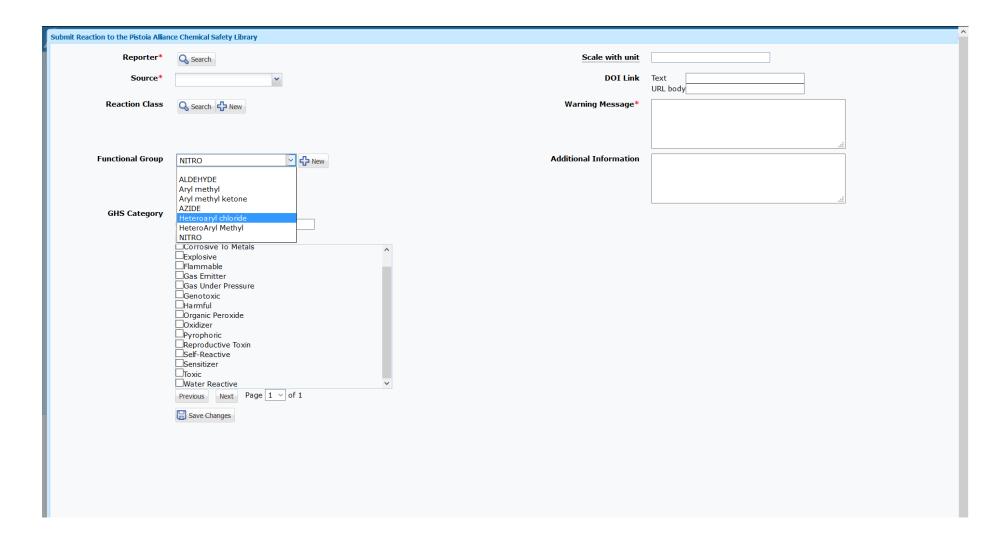
http://www.pistoiaalliance.org/projects/chemical-safety-library/

Lowering Barriers to R&D Innovation

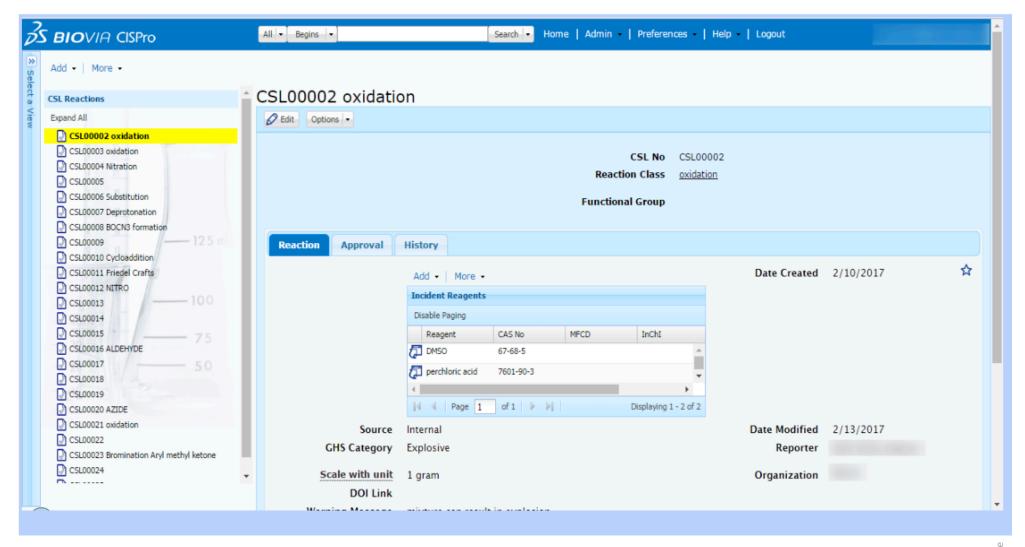
Home About Projects News Events Blog Contact


The Pistoia Alliance Chemical Safety Library project is dedicated to sharing previously inaccessible hazardous reaction information in the interest of increased laboratory and personal safety across the chemical industries. Previously, this information may only have been available within the company where the incident occurred. The Pistoia Alliance have now developed a data submission tool to capture, store and search such hazardous reaction information. You can input events to warn others, and you can check individual incidents or download the entire data set to use within your own systems.

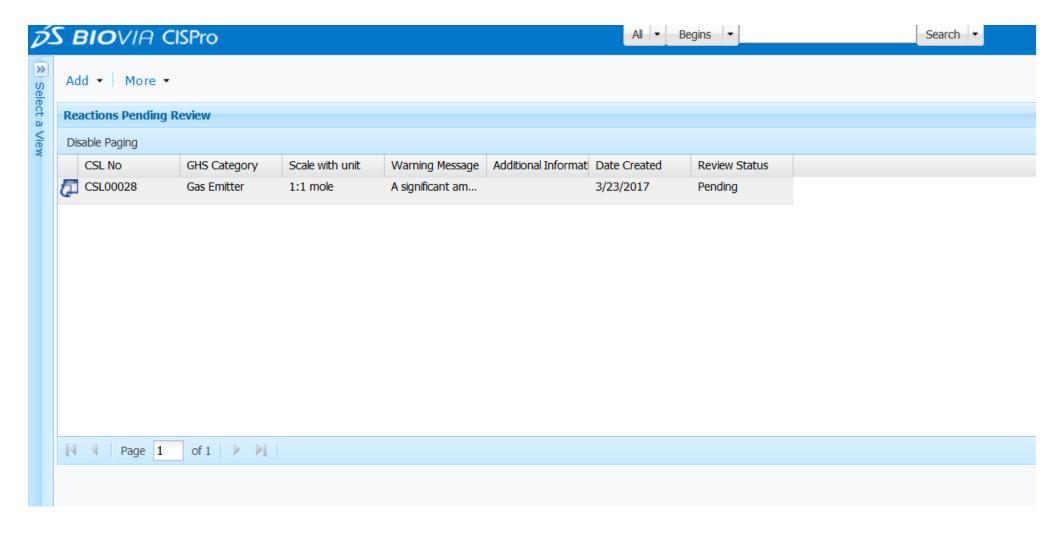
By building a rich data source of hazardous reaction information through this tool, and making it easily accessible we can all improve safety for those scientist carrying out

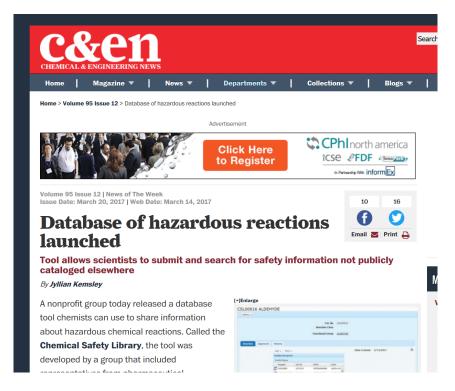

Top Tips

- Supported browsers: Internet Explorer, Chrome, Safari (make sure your browser is set to allow pop-ups)
- When submitting a reaction you must set Reporter to your name by searching for and selecting it
- When submitting a reaction you must create the reaction first, save it, and then on the next screen add the reagents
- After adding reagents to return to the Home screen, if clicking the Home button


The CSL prototype

The CSL prototype: adding an incident


The CSL prototype: new reaction added


The CSL prototype: all data available for download

CSL Data Download									
Disable Paging									
CSL No	Reaction Class	Functional Group	Reagent Name	CAS No	MFCD	GHS Category	SMILES	INCHI	Warning Message
CSL00002	oxidation		DMSO	67-68-5		Explosive			mixture can result in explosion
CSL00002	oxidation		perchloric acid	7601-90-3		Explosive			mixture can result in explosion
CSL00003	oxidation		sodium percarbonate	15680-89-4		Explosive			can form explosive acetone peroxide compour
CSL00003	oxidation		ACETONE	67-64-1		Explosive			can form explosive acetone peroxide compour
CSL00004	Nitration		NITRIC ACID	52583-42-3, 7697	MFCD00011349	Explosive	O[N+](=0)[0-]	InChI=1S/HNO3/c2	Can explode and/or have large exotherm. Use
CSL00004	Nitration		Ac2O			Explosive			Can explode and/or have large exotherm. Use
CSL00005			THF						Can polymerize, large exotherm. Avoid combin
CSL00005			Triflic anhydride						Can polymerize, large exotherm. Avoid combin
CSL00006	Substitution		DICHLOROMETHANE	75-09-2	MFCD00000881	Explosive	CICCI	InChI=1S/CH2Cl2/c2	Formation of diazidomethane which can explo
CSL00006	Substitution		SODIUM AZIDE	26628-22-8	MFCD00003536	Explosive	[Na]N=[N+]=[N-]	InChI=1S/N3.Na/c1	Formation of diazidomethane which can exp
CSL00007	Deprotonation		SODIUM HYDRIDE	7646-69-7	MFCD00003471				Thermal runaway reaction already at tempera
CSL00007	Deprotonation		DMF						Thermal runaway reaction already at tempera
CSL00008	BOCN3 formation		HNO2			Explosive			Explosion during workup when half of the solv
CSL00008	BOCN3 formation		BOCNHNH2			Explosive			Explosion during workup when half of the solv
CSL00009			ACETONE	67-64-1		Explosive			Formation of acetone peroxides possible. Try
CSL00009			H2O2			Explosive			Formation of acetone peroxides possible. Try
CSL00010	Cycloaddition		BF3			Explosive			Combinations of TMSN3 and Lewis acids can d
CSL00010	Cycloaddition		TMSN3			Explosive			Combinations of TMSN3 and Lewis acids can d
CSL00011	Friedel Crafts		AICI3						Explosive decomposition > 120ŰC observed of
CSL00011	Friedel Crafts		NITROBENZENE	98-95-3	MFCD00007043		[O-][N+](=O)c1ccccc1	InChI=1S/C6H5NO2	Explosive decomposition > 120°C observed of
CSL00012		NITRO	2-ETHYLHEXYLAMINE	104-75-6	MFCD00008148	Explosive	CCCCC(CC)CN	InChI=1S/C8H19N/c	Warning - This combination can cause a run-a
CSL00012		NITRO	1-CHLORO-2-NITRO	88-73-3	MFCD00007061	Explosive	[O-][N+](=O)c1ccccc1Cl	InChI=1S/C6H4ClNO	Warning - This combination can cause a run-a

Administrators monitor new incident inputs

The CSL prototype launch

https://www.chemistryworld.com/news/new-database-highlights-cumulative-chemical-dangers/3006996.article

http://cen.acs.org/articles/95/i12/Database-hazardous-reactions-launched.html

- 300 accounts requested within 36 hrs
- Last week: over 500 requested
- April 2: over 600 accounts requested

Prototype next steps

- Validate the premise: community is interested
- Validate the premise: community ready to share
- Validate the data model: We are capturing the right data
- Establish the effort needed to maintain the system
- Look for **long term partner** to sustain the effort
- Hackathons/competitions to leverage the data and enhance offering

We need your help

- Enter your incidents, near misses, literaturebacked events
- Get your colleagues involved

• What barriers do you see to general participation?

• Would you submit an entry?

Acknowledgements

CSL Funding Members

Bayer Merck Co
BMS Merck KGaA
GSK Pfizer

Steering Committee

David Nirschl BMS - Project Champion Mark Manfredi BMS - Project Lead Gabrielle Whittick - Pistoia Alliance Project Mngr

Karl Cable GSK
Manja Fieberg Bayer
David Tschaen Merck Co
Veit Ulshoefer Merck KGaA
Robert Wade Pfizer

Nick Lynch Pistoia Alliance Carmen Nitsche Pistoia Alliance John Wise Pistoia Alliance

Project Team

Ben Bracke PerkinElmer
Derek Brown Amgen
Karl Cable GSK
Steven Coffey Pfizer
Prot Popial Millinger Si

Bret Daniel MilliporeSigma

Jochen Erler Bayer Beth Fisher Merck Sudhir Hande AZ

Achim Herrmann Merck KGaA

Tony Johnson AZ Kostas Marinakis Elsevier

Leah Rae McEwan Cornell Univ

Daniel Meibom Bayer Akos Papp ChemAxon Jeffrey Sperry Pfizer Dave Tschaen Merck Victor Rosso BMS

Mariana Vaschetto Dotmatics

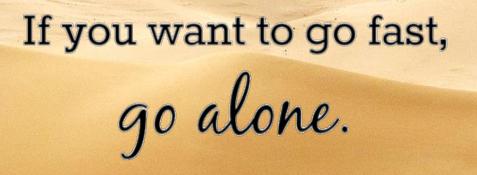
Development/Content support

Leann Wong Biovia Yoshiko Fukui Biova Mike Willis MilliporeSigma Jyllian Kelmsley C&ENews

Community of Interest

Andrew Nation Victor Rosso

Yannick Djoumbou Feunang


Rob Brown Nathan Watson Ron Gantt

David Christenson Marc Rounsaville Ken Kretchman Chris A Jakober Martin Neitzel Carol Mcnab Neal Langermann Rebecca Urbanek Bharath Ramachandran

Andreas Friese Daniel Freiner, Devon Johnston Evan Bolton John May

Markus Weisser Quan Yang Jon Patterson Roger Sayle Tim Dudgeon

Ralph Stuart

If you want to go far, go together.

- African Proverb -

