Hazmat event reporting in the media

Ralph Stuart, CIH, CCHO

Chemical Hygiene Officer, Keene State College

Secretary, Division of Chemical Health and Safety, American Chemical Society

August, 2017

The Project

- I used Google to collect newspaper headlines related to hazmat events, beginning in 2010. The scope of the search is English stories from the global press. The Google algorithm has changed over time, but the results do not seem to have varied significantly as a result.
- As of July 24, 2017, I collected 12,618 events (4.6 events/day) that google identified as containing these key words: "hazmat"; "chemical" and ("fire" or "explosion"); "laboratory" or ("fire" or "explosion" or "accident" or "injury")
- The Coast Guard National Response Center receives about 70 hazmat reports a day, so the headlines collection does not reflect all events, but those that attract local media attention.
- Over the last few years, I have included "discovery" stories that reflect the tone of the government or media in addressing chemical issues.

Why?

- The purpose is to provide context to specific lab events around hazardous materials (UCLA fire, Texas Tech explosion).
- The first question in my mind was:
 - "Can we tell if the safety performance of laboratories is different from other parts of the economy, in terms of hazmat incidents?"
- A second question became:
 "How is hazmat perceived in the popular press and how does that relate to the image of chemicals in the larger society?"
- Because of the many filters between an event and the press as well as between the press and the readers, there is no statistical intent. But, population numbers provide context for an individual report.
- Another goal is to help the chemical health and safety community stay aware of headline events, both to plan related responses and to be ready for questions from the public.

How?

- I review the stories and classify them based on:
 - Location
 - Economic sector (industrial, transportation, public, lab, other)
 - Type of event (explosion, fire, release, discovery)
 - Extent of damage (response, injury, death, follow-up)
 - Primary Chemical Involved
- I exclude "white powder" and fuel releases during normal traffic accidents.

Results: Where are hazmat events reported?

Results: What Sector was Involved?

Results: What Happened?

Results: How Bad Was It?

Results: What Chemicals?

Results: Interesting Observation

Some Lessons from the Data

- HAZMAT happens we should learn from it; there's a reason for the regulations.
- A big public event can develop from a small risk; upper management expect responders to use "an abundance of caution"

- Information moves in odd ways and rumors abound.
- The press isn't great (but it isn't bad) with chemical names; it's worse with follow up.

Broader Lessons

- There are reasons for individuals to be chemophobic in the broader economy – particularly around swimming pools, clandestine labs, ammonia systems and flammables
- Chemophobia around personal products is more problematic: The term "toxic chemical" needs to be clarified; GHS presents an important opportunity in this regard
- STEM education and "phobia": Chemists can be as regulo-phobic as the public is chemophobia
- Science education engagement needs to include safety education

Figure 3. Public welfare beliefs in time 1, time 2, and postgraduation work (time 3), among engineering students who enter engineering jobs.

Note: Each bar represents the meane value on that measure at time 1 (darkest bar), time 2 (middle bar), and time 3 (lightest bar). Only those students who graduated and went on to enter an engineering job are included in these values. Means on all values were scaled as follows: ([mean - 1]/5).

Case 4: Public Perception of Chemicals

You are from Bangor, ME and studying chemistry at Keene State College. The Bangor paper publishes an editorial entitled *"The consumer game of whack-a-mole with chemical dangers"*. Your high school chemistry teacher sends you an e-mail wanting to know what you think about the article from a chemistry point of view. Your answer is intelligent enough that she wants you to write a letter to the editor responding to the editorial because it is important to show taxpayers that Bangor kids are learning good science.

After this suggestion, you do some googling on the topic and find it interesting but are more confused than you were before you did this research. Do you have an ethical obligation to write the letter?

- A. Yes, all citizens should understand and discuss state law, no matter what their educational level
- B. Yes, citizens educated in chemistry have an obligation to weigh in on topics of public interest that they have expertise in
- C. No, this is not a chemistry issue, but a public health issue that goes well beyond chemistry.
- D. No, your research is so confusing that you just want to get back to your lab work

BANGOR DAILY NEWS (Multimeters)

The consumer game of whack-a-mole with chemical dangers (https://bangordailynews.com/2016/04/18/opinion/editorials/theconsumer-game-of-whack-a-mole-with-chemical-dangers/)

JOBHUALOTT REVTER

An ACS CCS Initiative: Apply Risk Assessment concepts to chemical videos and demos

Key Ideas behind the Rubric

- Include good news (why we are doing this?) in tandem with bad news (precautionary statements and emergency scenarios)
- Include safety education as part of science
- Leverage the common language of the Globally Harmonized System

		DRAFT					
RAMP Safet	Assessment Rubr	ic for Chemical Demor	strations and Video	05			
Evaluation Scale	Problematic (up to 1 pt	3 - Average (up to 3 pts)	Excellent (up to 5 pts)	Points awarded			
Pedagogical Intent	Attention getting only:	Concept explained but	Student discussion of				
	no science concept mentioned	student inquiry not encouraged	their obsercations and application of concept				
			shown				
atety education included	Injury or illness involved in video	Satety concerns described during video	Pre-demo safety info included				
enue appropriateness	Workspace clearly not	Some concerns about space	Space has appropriate				
	appropriate for	arise during course of work	equipment and layout				
	chemistry performed		for chemistry performed				
udience appropriateness	Audience not age	Audience instructions	Discussion of changes				
	appropriate for this leve of chemical hazard	appropriate to age group involved	audiences included				
ecognize Hazards	No information about	Key chemicals identified, no	Chemicals clearly				
	chemicals used or process provided	safety information provided: No process	identified with form, concentation, and				
		hazards identified	amounts; process				
hemical hazards are idea	fied by Globally Harmon	red Sustem requirements. Pro	hazards described				
in temp	erature, pressure or poter	tial unplanned chemical react	ions.)				
ess Risks	No risk information	Selected risks mentioned	All chemical and process				
	provided	and implicitly prioritized	risks clearly described and prioritized				
ssessing risks involves pri	oritizing scenarios in whi	h the potential hazards are like	ely to cause damage and				
	developing control stra	egies for those scenarios.)			. 4	. .	
nage Safety ntilation	Ventilation concern	Ventilation concerns	Ventilation	<u> </u>	Situ	ational	
	arises in the course of	implicitly addressed by	requirements exploitly				
	the video (e.g. smoke obscures visibility)	equipment used	mentioned as part of the			reness	
rsonal Protective	No PPE or a problem	Demonstrator's PPE	Demonstrator's PPE			1011033	
uipment for	results from	appropriate for chemistry	appropriately used and				
monstator	arises in the course of		explained				
	the video				//		
arsonal Protective	Problem resulting from audience PPE arises in	Audience PPE used appropriately	Audience PPE appropriately used and				
	the course of the video		explained				
anning by demonstrator	No evidence of planning	Some confusion as	Presenter clearly in		<u> </u>	ulturo	
	confused presenter	demonstration proceeds	control and experienced		U U	nture	
structions for audience	Audience injuries from	Audience participates in an	NFPA 45 style briefing				
	lack of instruction	orderly fashion; presenter	provided for audience				
		implicit					
age 1 of 2		DRAFT		Edu	cation	and Train	ing
	Physical Hazards				Health Hazards		
Pictog	gram G	HS class	Signal Wo	ords	Pictogram	GHS class	Signal Words
<u> </u>		xplosive	Danger Warnin	or Ig		Corrosive	Danger only (health)
			Danger or Warning			Toxic	Danger only
	FI	ammable	Danger Warnin	or Ig		Health Hazard	Danger or Warning
	Corrosive Warning only (physical)		$\left \diamondsuit \right $	Irritant	Warning only		

Questions?

Divergent ideas Coexisting in harmony Resilient Progress

Resilience through innovation depends on a divergent co-existence of ideas. Responsive and resilient solutions to societal challenges and opportunities – and solutions that can be adapted or substituted within a rapidly changing and uncertain world – require a rich feedstock of divergent, novel ideas that can be combined in creative ways. How can such a rich diversity of ideas best be nurtured?