
Emerging Energy Saving Technologies for Laboratories

Topics

- Issues, Challenges and Drivers
- Emerging Technologies
- Spotlight:
 - Filtered Chemical Fume Hoods
- Process of Implementation
 - Safety & application
 - Validation of use
 - First costs / Operating & maintenance
- Case Study:
 - Framingham State University Science Building

What are the challenges?

Buildings vs. Non-Lab Buildings


- Buildings account for over 40% of all energy consumed use in the US today.
- Lab buildings are currently among the largest energy consumers
 - Without adequate measures, the average laboratory building could consume 3 – 5 time the energy of an average office building.
- Design Labs to the meet or exceed environmental health and safety requirements and achieve a high level of performance and sustainable design.
- Justify first cost vs. life cycle cost paybacks.

🔰 ELLENZWEIG

What are the drivers in lab buildings?

- High air change rates (Air Changes per Hour) & Oncethrough air systems
- Heavy equipment loads and a historically conservative approach to plug load design
- Use and/or misuse of chemical fume hoods and other ventilated enclosures and systems
- Ever-increasing energy costs and concerns for the environment

American Chemical Society National Meeting & Exposition

LENZWEIG

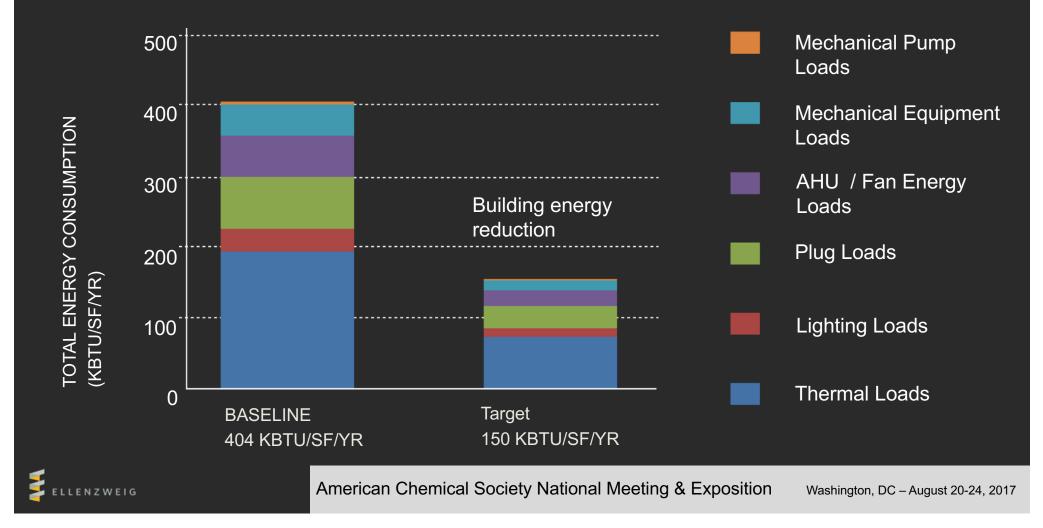
Washington, DC – August 20-24, 2017

Filtering Chemical Fume Hoods

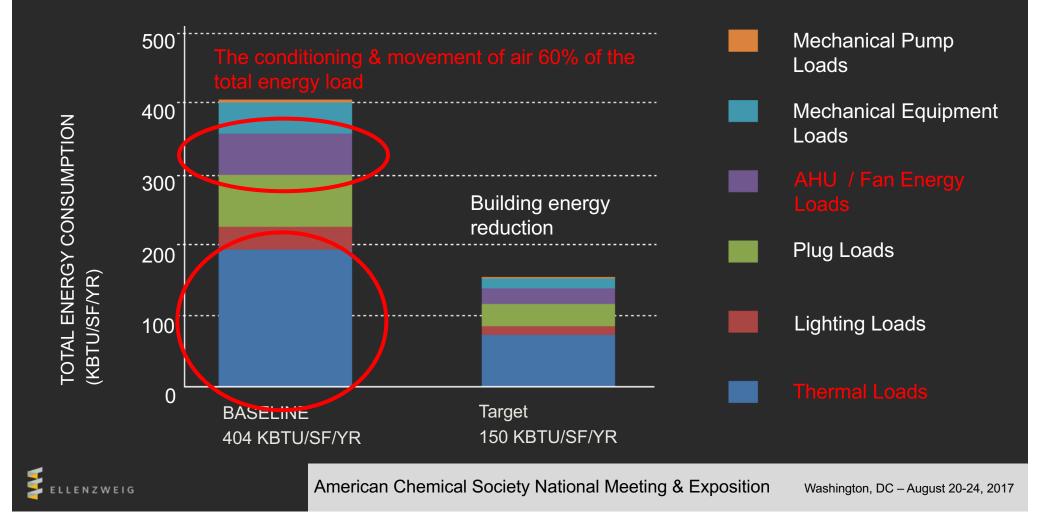
- Age	Traditional Fume Hood	VAV or Low Flow Fume Hood	GFH with Neutrodine Technology	Comments		
Energy Costs	Your results here	Your results here	\$293/yr	Aside from a bit of electricity, only 3,737 Kwh/year on average, GFH with Neutrodine Technology consumes virtually no energy		
Operating cost	Your results here	Your results here	\$1480/yr	Even when taking into account filter changes, operating costs for GFH with Neutrodine Technology		
Ductwork cost	Your results here	Your results here	\$0	A smaller handlers, less infrastructure,		
Ease of planning	Your results here	Your results here	Extreme	gured into a		
Adaptability	Your results here	Your results here	Total	me hood that can		
Usac	Kewe states States associated New New		Large			
ELLENZWEIG		American Che	mical Society Natio	onal Meeting & Exposition Washington, DC – August 20-24, 2017		

Traditional Ducted Chemical Fume Hoods

Today there is estimated to be over 750,000 chemical fume hoods in operation across the U.S.


- \$5,600 in annual energy costs per CFH
- Emitting an average of 20 tons of carbon dioxide per CFH
- Emitting an average of 150 lbs of hazardous chemicals into our atmosphere per CFH

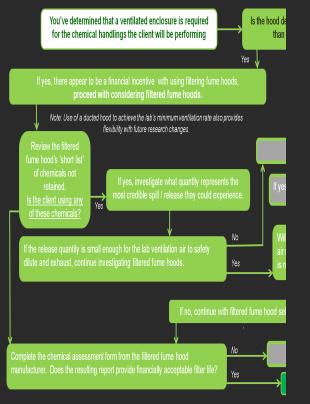
Traditional Ducted Chemical Fume Hoods


Today there is estimated to be over 750,000 chemical fume hoods in operation across the U.S.

- \$4.2M in energy costs
- 15,000 tons of carbon dioxide emissions
- 56 tons of hazardous chemicals into the atmosphere

Building Energy Drivers

Building Energy Drivers


Case Study - Framingham State University **Building statistics:** 70,000 gsf 16 Teaching Labs \$54 Construction Costs (49) Filtering Fume Hoods

American Chemical Society National Meeting & Exposition

LENZWE

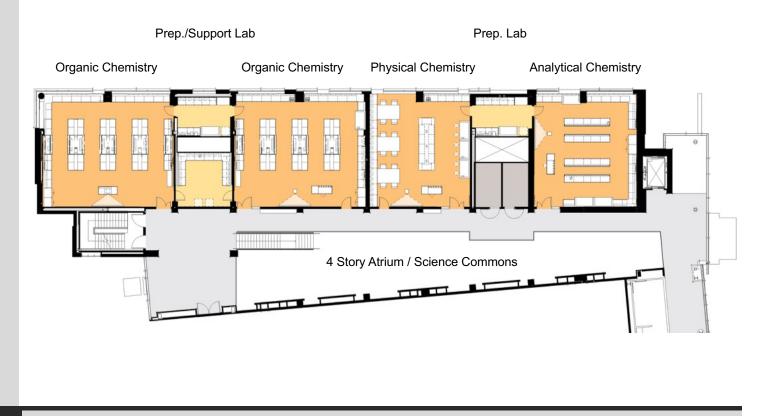
Washington, DC – August 20-24, 2017

What is the process?

Framingham State University

- Institutional Commitment to both safety & energy efficiency is critical
- Build level of understanding, comfort and consensus with Faculty, EH&S and Facilities Planning, Operation & Maintenance
- First step: Develop a survey of existing and future chemical use within the labs.
- Next step: Detailed analysis to determine
 - Suitability of filtration for intended use
 - Frequency of anticipated filter & sensor changes
 - Cost benefit analysis

ELLENZWEIG


Early Design Phase Planning

Framingham State University

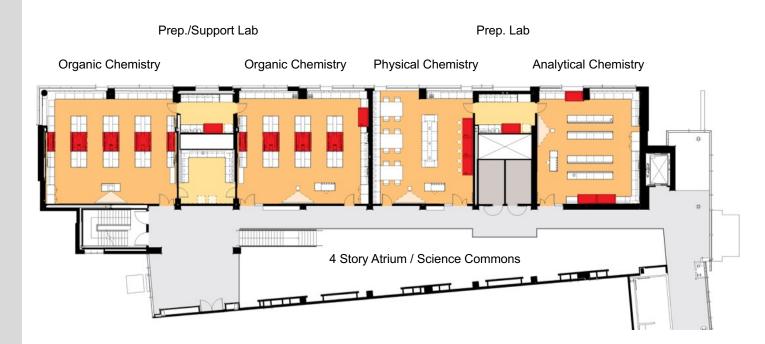
Framingham State University Science Building

Level 4 Program:

- Organic Chemistry
- Physical Chemistry
- Analytical Chemistry

Traditional Ducted Fume Hood

Framingham State University


Framingham State University Science Building

Level 4 Program: (24) 6'-0" VAV Ducted Chemical Fume Hoods

Estimated first cost / hood: \$12,000

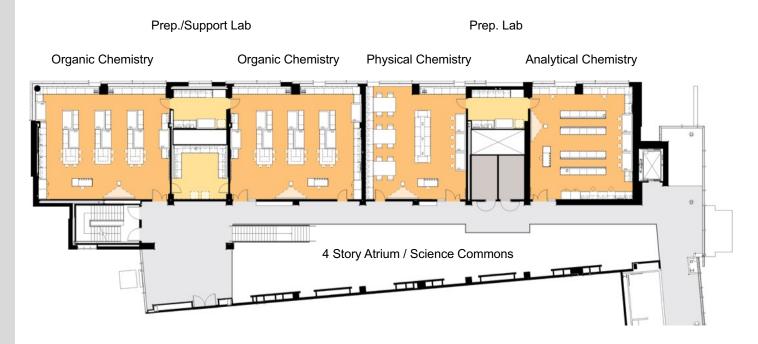
Estimated annual energy & maintenance cost / hood:

\$2,700 (Assume 40hr/wk)

Filtering Chemical Fume Hoods

Framingham State University

Framingham State University Science Building


Level 4 Program:

(24) 6'-0" Filtering Chemical Fume Hoods

- Organic Chemistry Labs
- Physical Chemistry Lab
- Analytical Chemistry Lab

Challenge: Filtering fume hoods are larger than ducted hoods

Structural grid was set / Offset design concept

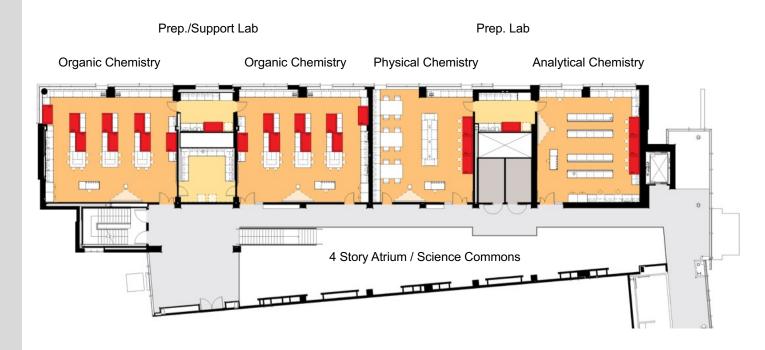
ELLENZWEIG

Filtering Chemical Fume Hoods

Framingham State University

Framingham State University Science Building

(24) 6'-0" filtered hoods

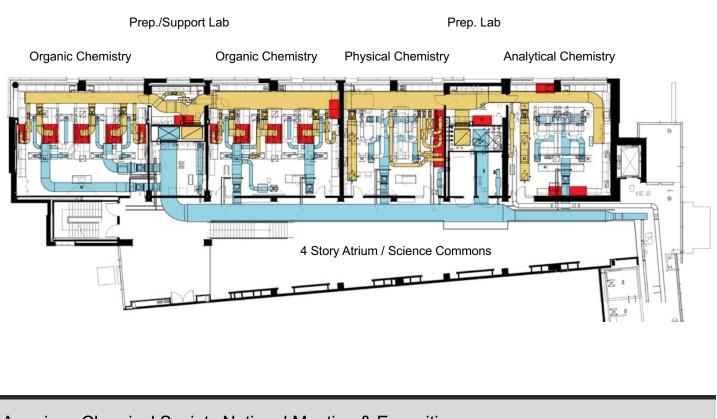

Estimated first cost / hood: \$25,000

Estimated annual energy & maintenance cost / hood: \$1,900 (Assume 40hr/wk)

Delta:

Filtering Fume Hood: +\$13K/hood

Energy/Maint. Per hood: - \$800-\$1,000 annually


HVAC - Ducted Chemical Fume Hoods

Framingham State University

Framingham State University Science Building

VAV Ducted Chemical Fume Hoods

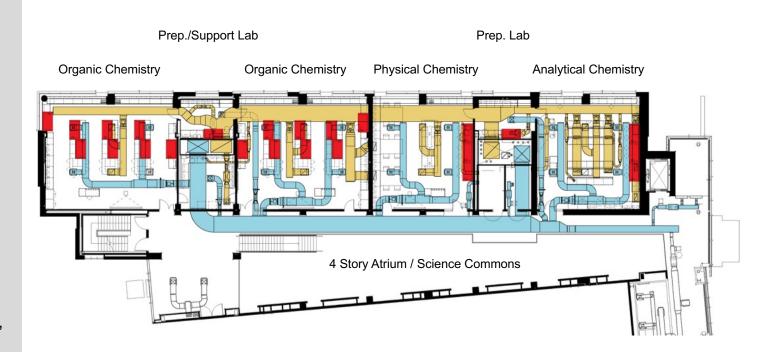
Before Value Engineering

HVAC - Filtering Chemical Fume Hoods

Framingham State University

Washington, DC – August 20-24, 2017

Framingham State University Science Building


Filtering Chemical Fume Hoods

After Value Engineering

25% reduction in the mechanical infrastructure

- Supply AHU capacity
- Exhaust AHU capacity
- Reduction in chiller capacity
- Reduction in exhaust valves, ductwork and controls
- \$800K first cost savings ***

NZWEIG

American Chemical Society National Meeting & Exposition

Comparative Analysis

Framingham State University

Comparison First Cost NC Ducted vs. Filtered,	CV	VAV	VAV HP/LF	Filtering
Fume Hood, 6Ft, Vertical Sash ^{1,2}	\$8,000-\$10,000	\$8,000-\$10,000	\$12,000	\$25,000
Building Infrastructure: M-E-P, Lab Services & Data ^{0,3}	\$20,000	\$25,000	\$25,000	\$2,000
Total First Costs	say \$30,000	say \$35,000	\$37,000	\$27,000
Energy Costs/Year				
Exhaust Fans ⁴	\$1,367	\$911	\$711	\$293
Make-up Air (\$5/cfm) ⁵	\$6,000	\$4,000	\$3,120	\$0
Maintenance Costs/Year	\$1,200	\$1,500	\$1,500	\$1,800
Total Operating & Maintenance/Year	\$8,567	\$6,411	\$5,331	\$2,093

Cost comparison data prepared by Ellenzweig Architects in collaboration with BR+A Consulting Engineers, R.W. Sullivan Engineering and Vanderweil Engineers.

Image: Sellenzweig American Chemical Society National Meeting & Exposition Washington, DC – August 20	24, 2017
---	----------

Emerging Energy Saving Technologies for Laboratories

Lessons Learned

- Investigate / Decide early in the design phase;
 - Lost opportunity Floor height reductions
 - Planning challenges Increased hood depth
- Be conservative:
 - If there is uncertainty about types of chemicals, or frequency of use, plan for a ducted hood as a back-up
- Just like any other pierce of lab equipment, the users need to be properly trained (Not a conventional CFH)

ELLENZWEIG

Questions?

American Chemical Society National Meeting & Exposition Washingt

Washington, DC – August 20-24, 2017