Engaging Students to Gain Understanding of Chemical Safety Information

Ellen Sweet, MS, CCHO Cornell University March, 2019

Outline

- Chemistry procedure preparation
- Working with EHS staff
- Risk assessment and documentation
- Next!

Incoming!

We know they're working with hazardous materials. How do we help them with a risk assessment?

Culture

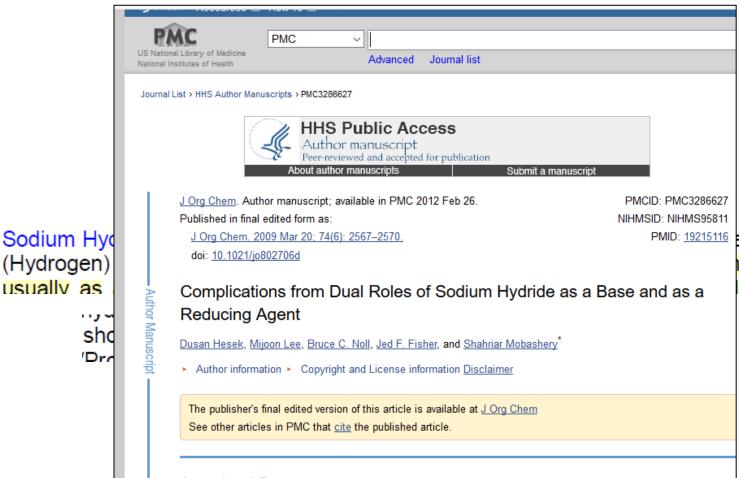
Have processes in place to develop protocols for conducting their work safely.

Culture in which EHS is seen as a team member

Open lines of communication

Easy mechanisms for researchers to reach EHS staff

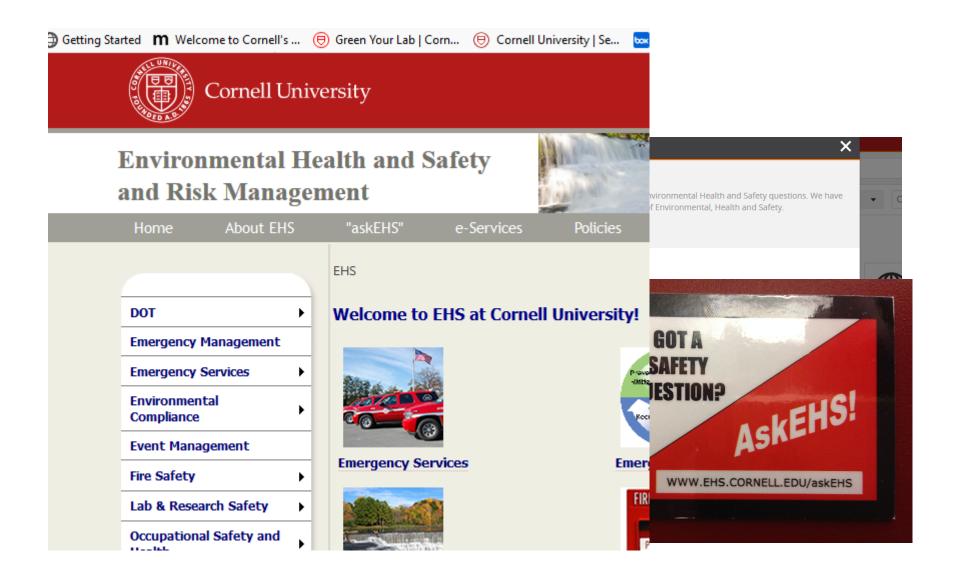
Student Assessment of Chemical Risk?


Risk Assessment Tools

This does not include completing a Job Hazard Analysis.

- SDS
- published procedures on similar work
- safety information from chemical supplier
- Internet searches on specific chemical safety information
- Consultation with colleagues
- Verbal review of laboratory <u>practices</u>
- Other

When to Bring in the Big Guns


eases flammable ga

y chemical supplier
lispersion is safer t

c)	Odour Threshold	no data available
d)	pH	no data available
e)	Melting point/freezing point	Melting point/range: 42 - 45 °C (108 - 113 °F) - lit.
f)	Initial boiling point and boiling range	249 - 250 °C (480 - 482 °F) at 993 hPa (745 mmHg) - lit.
g)	Flash point	135 °C (275 °F) - closed cup
h)	Evapouration rate	no data available
i)	Flammability (solid, gas)	no data available
j)	Upper/lower flammability or explosive limits	no data available Safety
k)	Vapour pressure	no data available
I)	Vapour density	no data available
m)	Relative density	1.004 g/cm3 at 25 °C (77 °F)
n)	Water solubility	no data available
o)	Partition coefficient: n- octanol/water	no data available
p)	Auto-ignition temperature	no data available
q)	Decomposition temperature	no data available
r)	Viscosity	no data available
s)	Explosive properties	no data available
t)	Oxidizing properties	no data available

How to Find EHS

Initiating a Review

Templates that enable a thoughtful assessment of the procedure

Readily available chemical safety resources

Format of the Documentation

Job Hazard Analysis				
Job Location: HEB 155	55 Laboratory Group: Frey		Date:	
Activity or Job				
Completed By				
Equipment and	Materials- 2ml septum vials (6), 0.5 ml 1% solution of NaH in THF,			
Chemicals Required	septum tops, syringe needle for nitrogen, PPE, propargyl bromide,			
	fabric, freezer bag of ice, sand bucket			
Work Steps and Tasks Describe the tasks / steps involved in the work – in order	Hazards Identified for each Task / Step	Risk Level Risk Nomogram can be used	Control / Safe Work Procedures for each Task / Step Controls to be implemented	
Location- glovebox N2 (g) cylinder located next to hood. Through antechamber, place septum bottles	Contamination of glovebox with air	low	Training on the proper use of a glovebox and	

EII De ign

n

EIII Orv

Format of the Documentation

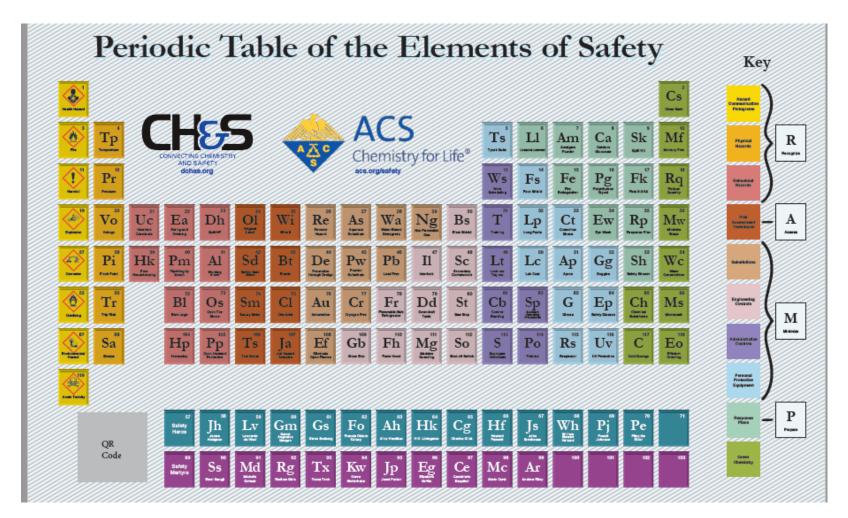
	Cornell University Department of Environmental Health and Safety	Hazardous Gas Proposal Form	
Title:	Pre-Operational Safety, Health & Environmental Review		Revision: #1 3-22-2018

<u> </u>					
Research Process Overview					
Date: 02-019-2019	Project:	Ethane Dry Reforming	Principal Investigator (PI):	David Erickson (de54); Tobias Haranth (th358)	
Review Initiator:	Elvis Cao		EHS Representative:	Ellen Sweet	
Other Review Team Members:	PPelletier.	DWoodie, EKolacki	Lab Location:	Olin Hall, B01	
Reason for POSHER:	Initial Rev	Initial Review New Chemical or Process		Renovation/New Construction Project	
Brief Overview of Research/	Photocatalytic catalysis of ethane dry reforming to produce syngas (C ₂ H ₆ + 2CO ₂ → 4CO + 3H ₂).				
Laboratory Process:	UV LED lights will be used as the light sources, and heat tapes will be used to provide the required heat.				
	We have already conducted photocatalytic study using the same platform for RWGS reaction $(H_2 + CO_2 \rightarrow CO + H_2O)$.				
Brief Description of Primary	Both ethane and syngas are flammable. High temperatures				
Hazards:			-		

Initiation Scoping	List Responses and Actions Required	
Is a Safety Data Sheet for the specific gas provided with this form?	No	
Timeframe desired for research to begin?	Middle to late February, 2019	
What is the expected duration that the research will go?	A few months	
Amount of gas consumption (per run, per week?)	8 hours each run, 2-3 times per week= 16-24 hours per week	
**** - 1 - 4 - 40	P F4 4 600	

"Unpacking" the Procedure Steps

- How should tools be formatted?
- What questions should be asked?
- Search/engage other resources
 - —DCHAS list-serv (not every EHS office has one of us!)


Formulate an understanding of the hazards of the process, not just of the individual chemicals.

What's the Matter

- Can be very time consuming
- Can't do this with everyone

Nifty New Tools

Where does this interactive tool fit into the risk assessment process students do?

Changing Science

Management buy-in that current methods must be improved

Students better prepared with new assessment methods

Efficient, Detailed, and Sustainable

Enter-iRAMP

