

Making the Most Out of Your Ph.D. Journey

Research, Skills, and The Great Beyond

Date: Wednesday, July 14, 2021 @ 6-7pm IST (8:30am ET) Speaker: Sarbajit Banerjee, Texas A&M University and ACS Omega

What You Will Learn:

- · How to identify fit with a specific graduate program and research group
- How to use your time graduate school to consider different career opportunities and align your journey to your intended career aspirations
- · What resources exist to help with your PhD journey

Expanding Your Opportunity

The Fulbright U.S. Scholar Program

Date: Thursday, July 15, 2021 @ 2-3pm ET Speaker: Jaclyn Assarian, Fulbright U.S. Scholar Program Moderator: Joerg Schlatterer, American Chemical Society

What You Will Learn:

- successful applications for scholars
- Award details to all world regions of particular interest to ACS members at every stage of their academic career, that facilitate teaching, research and professional projects abroad
- Background on the Fulbright U.S. Scholar Program, including program goals and eligibility for grants available for U.S. citiz

Co-produced with: ACS Graduate & Postdoctoral Scholars Office

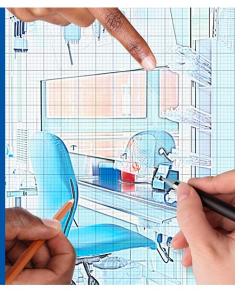
Date: Wednesday, July 21, 2021 @ 2-3pm ET Speakers: Jim Verdonik and Benji Jones, Innovate Capital Law / H.N. Cheng, 2021 ACS President and US Department of Agriculture Moderator: Jim Skinner, Terregena Inc. and ACS SCHB

What You Will Learn:

- live by for a long time
- Why allocating equity ownership to founders, employees, contractors and investors takes a lot of planning
- How tax issues play important roles in planning

Co-produced with: ACS Industry Member Programs, ACS President-Elect, ACS Board Committee on Corporation Associates, ACS Committee on Technician Affairs, the ACS Division of Small Chemical Businesses, and the ACS Division of Business Development and Management

www.acs.org/acswebinars



co-produced with:

Working Together to Design Safer Laboratories

FREE Webinar | TODAY at 2pm ET

A C S WEBINAR WILL BEGIN

Working Together to Design Safer Laboratories

Presentation slides are available now! The edited recording will be made available as soon as possible.

www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Chemical Health and Safety and the ACS Committee on Chemical Safety.

Safe Lab Design: A Call for Papers

https://pubs.acs.org/doi/10.1021/acs.chas.1c00034

WHY SHOULD YOU PARTICIPATE?

- First Who is primarily researchers for our discussion, but also EHS professionals, Facilities, ...
- Good lab design is needed to safely perform research
- To work efficiently as well as effectively, spaces should reflect major needs
- Lab Design requires a balance between creating spaces that can be used by specific researchers and spaces that can be used for many years
- Sustainability of labs both in energy/resources use as well as utility of the space
- Financial renovations and construction are large investments
- You will benefit from participation, and the Design Team will benefit from having you there

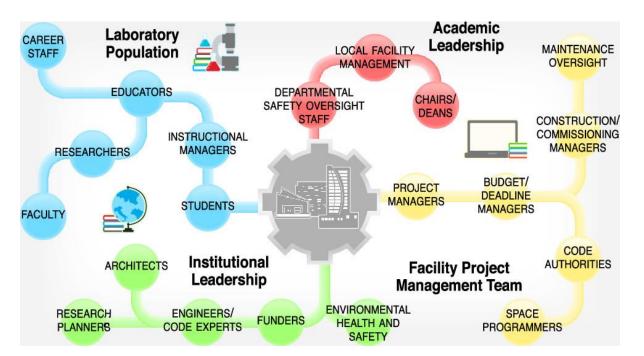
PARTICIPATION IN PROJECT IS CRITICAL

- To get the best spaces there needs to be a dialogue
- Never Assume the Project Team will know exactly what you need
- Participation is important from the development of the project scope to final project commissioning
- Frequency and time needed will change over the course of project
- Who the PI or member(s) of lab group participating need to represent the whole group

19

DOORS AND OTHER FEATURES

- The lab door example in the editorial describes just one of many features, and aspects of design that require thought, code analysis, Facilities input, understanding of institutional culture and preferences
- Sometimes it's not as much about correct answers as answers that are correct for your building or spaces
- The best outcome may require some patience and getting several people, areas/depts and opinions sorted
- A new lab is an opportunity to do things you should do or always wanted to do
- When moving into a new bldg. or space get to know features and the intent of design that was done


GOOD LAB DESIGN CAN ENHANCE SAFETY CULTURE

Spaces and features in lab can help with safety performance

- Space to don and doff lab coats and other PPE/public spaces separated
- Appropriate sized and ventilated storage areas and cabinets for chemicals
- Waste collection areas and enhancements can help prevent waste management problems – hazardous waste, bio-waste, other waste
- The correct size, number and well appointed fume hoods with utilities (also energy efficient)
- Type, location and designation of emergency eyewashes, safety showers and other safety equipment
- Safe and convenient locations to eat
- · Appropriate and specific signage

2:

DOI: (10.1021/acs.chas.1c00034)

Lab Design - Virtual Special Issue (VSI)

- We want many voices representing many aspects of the lab design process
- Ideas, concepts and discussion of how we can all contribute to creating better, safer, more efficient spaces are requested
- Please share

https://pubs.acs.org/doi/10.1021/acs.chas.1c00034

2.

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

What has been your experience in moving your science into a new laboratory?

- It went smoothly
- There were some hiccups that were addressed promptly
- We have ongoing issues which we have to work around
- Moving into our current lab is a never-ending challenge
- Other (Tell us more in the chat!)

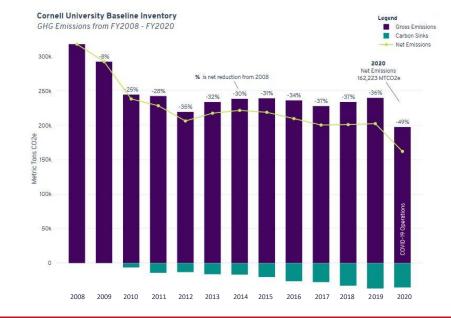
Part 2: Laboratory Operations: Commissioning Ventilation Systems

Ellen Sweet, MS, CCHO

25

Commissioning Ventilation Systems

Verifies that systems are operating as designed


- Air Exchange Rates (speed and volume of ventilation)
- · Temperature and Relative Humidity
- Room Pressurizations (direction of air movement between spaces)

Test & Hood Conditions	As installed			Continuity (YTN)	Yes		
Marierisc Within Hood (YTN)	No. 230		Performed By				
Fune identification							
MRFLOW VELOCITY	TEST						
	Design	Actual	*		Design	Actual	•
Yest Samp Mode		Airfow		ON	48	467	
Sash Configuration	Verto 💬		HightLow Velocity (FFM)	300/94			
Sash Opening (YUM)	28.5×18		Yest instrument	Anemoreter			
	200 67 67						
FFM	100	sr.	97	Acceptance Criteria		Pass	
COCAL AIRFLOW VISI Test Sing Rode		-	97	Acceptance Criteria Face Edge Containment		Para	
LOCAL AIRFLOW VISI		TEST					
OCAL AIRFLOW VISI Test Simp Wods		TEST SnokeWood	87	Face Edge Containment		Fam	
OCAL AIRFLOW VISI Yest Simp Mode Sash Configuration		TEST Smile/Vaul	97	Face Edge Containment Rear of Hood		Para Para	
OCAL AIRFLOW VISI Yest Simp Mode Sash Configuration Sash Opening (NAM)		TEST Smile/Vaul Verkal 385+38	97	Face Edge Containment Rear of Hood Passified		Pass Pass Pass	
OCAL AIRFLOW VISI Yest Simp Mode Sash Configuration Sash Opening (10M) Challenge Medium Used	JALIZATION	TEST SminWasil Vertical 36.5×38 SminWasil Plass	v	Face Edge Containment Rear of Hood Passified		Pass Pass Pass	

26

Notes: Carbon sinks or reductions include retired renewable energy certificates, offsets from composting food waste on campus, and emissions associated with exported electricity.

Cornell University
Environmental Health and Safety

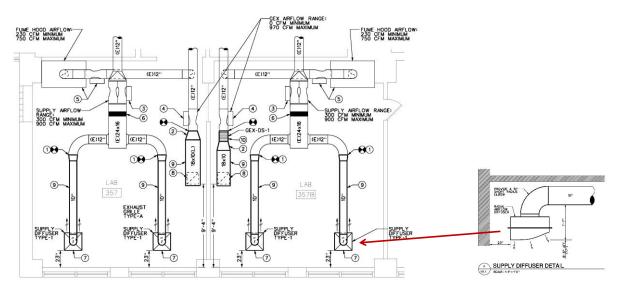
27

Retro-commissioning

Value added;

Opportunity to optimize safety and operating costs;

Continuously changing research operations requires ongoing oversight of ventilation systems.


Lab Design that Reduces Potential Exposure

29

Lab Design that Reduces Potential Exposure

Cornell University
Environmental Health and Safety

Air Quality Considerations

- Single-pass ventilation in labs
- What types of filtration is cost effective?
 - Pre-filters with MERV ratings 1-8
 - MERV 9-15

31

Communicating about Ventilation

Properly functioning mechanical systems support safe lab work.

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

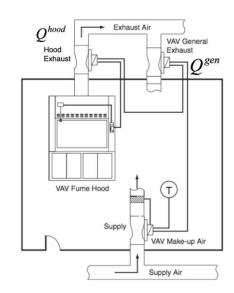
How engaged are the PI's or lab managers at your organization with lab design or facility operations?

- We routinely work with facilities staff to maintain good working conditions for our science and our scientists
- We work well with facilities staff when problems arise
- We have comfort problems that tend to persist over time but they do not interfere with our work

Other (Tell us more in the chat!)

33

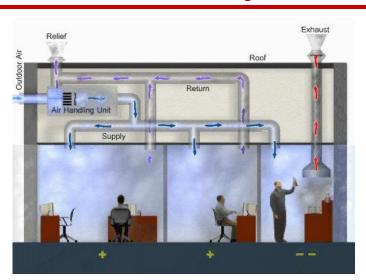
Importance of Understanding Ventilation Systems to Successfully Solve Problems


Melinda Box, Chem Dept Safety Officer, North Carolina State University

Bill Garfield, Technical Sales, BlueHat Mechanical

Case Study #1 – Fumes in the Hallway

- VAV (Variable Air Volume) Hood Components
 - Sash position sensor
 - hood damper
 - General exhaust damper
 - Supply air control
- <u>Air Changes per Hour (ACH)</u> measure of the air volume added to or removed from a space in one hour, divided by the volume of the space



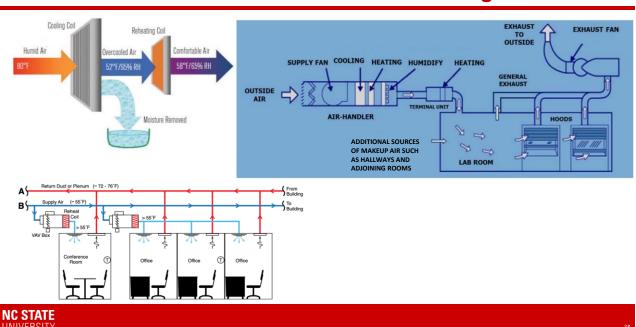
NC STATE UNIVERSITY

35

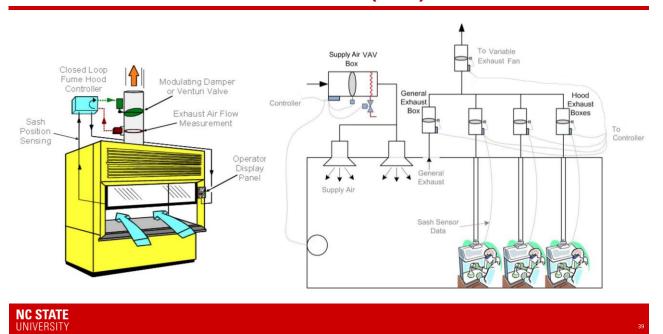
Case Study #1 - Fumes in the Hallway

- Exhaust vs. Return Air
- Supply Air vs. Makeup Air
- Air pressure balance
 - Positive vs negative

 $\underline{https://19 january2017 snapshot.epa.gov/indoor-air-quality-iag/animation-series-visual-reference-modules-indoor-air-quality-building_.html$


Case Study #2 - A Perfect Storm

- Humidity condensing on ceiling fixtures in multiple locations and dripping down in a lab space
- Extreme hot and extreme cold in adjacent locations
- All hoods alarming at once at irregular intervals in different locations on the same floor (locations not in synch)
 - · High flow alarms
 - · Raising sashes fixes this


NC STATE UNIVERSITY

37

Dehumidification and Duct Heating

Variable Air Volume (VAV) Hoods

Understanding how ventilation worked meant:

RATHER THAN REPORTING	REPORT INSTEAD
that fumes are detected in a hallway	That a specific room has a pressurization issue
that a room or lab has extreme temps or high humidity	If applicable, that an adjacent room is experiencing the other extreme
large scale issues now and then	As regularly as possible, because design issues are difficult to identify and potentially even more challenging to remedy

NC STATE UNIVERSITY

of

LEARNED

HELPLESSNESS

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMEN

In your experience, what has been the GREATEST FACILITY INFRASTRUCTURE CHALLENGE you have faced in the laboratory you have worked in?

- Lab ventilation challenges
- Temperature and relative humidity control
- Inconsistent power supply or electrical services
- Uncomfortable office and classroom conditions
- Other (Tell us more in the chat!)

Empowering Academic Researchers to Strengthen Safety Culture

Sunday, October 17, 2021 from 2PM – 6PM ET. *The workshop is \$25 per participant.*

Workshop goals are to:

- Educate participants about the value of risk assessment
- Guide participants towards gaining awareness of safety culture messages from the leadership at their institutions
- Empower participants to expand their safety networks and develop laboratory safety teams.

2021 OCTOBER									
SUN	MON	TUE	WED	THU	FRI	SAT			
					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
¹⁷ X	18	19	20	21	22	23			
24	25	26	27	28	29	30			
31				-		+			

This 4-hour workshop is primarily directed at frontline researchers in academic institutions: graduate students, postdoctoral scholars, and undergraduate students. Faculty and safety staff are also very much encouraged to participate.

https://dchas.org

ì