A Chemist's Guide to Lab Ventilation

Melinda Box, Chem Dept Safety Officer, North Carolina State University Bill Garfield, Technical Sales, BlueHat Mechanical Ralph Stuart, Environmental Safety Manager, Keene State College

Case Study #1 – Fumes in the Hallway

Why was this office different?

- fume release occurred irregularly
- one administrative staff member experienced occasional migraines in conjunction with the fume releases
- all climate conditions and lab practices appeared to be the same as many other labs in the building

Room Air Balance

- Air pressure balance
 - Positive vs negative
- Exhaust vs. Return Air
- Supply Air vs. Makeup Air

https://19january2017snapshot.epa.gov/indoor-air-quality-iaq/animation-seriesvisual-reference-modules-indoor-air-quality-building_.html

Air Changes per Hour (ACH)

ASHRAE guidance for ACH

ASHRAE Classification of Laboratory Ventilation Design Levels

Selecting ACH target

Factors -

- **degree** of health hazards
- quantity of hazardous material handled
- volatility of hazardous material
- storage and use practices

ISO Standards for Clean Rooms

Recomm	ended Air Changes ar	nd Ceiling Coverag
ISO	Air Changes	Ceiling
Class	Per Hour	Coverage
ISO 1	500-750	80-100%
ISO 2	500-750	80-100%
ISO 3	500-750	60-100%
ISO 4	400-750	50-90%
ISO 5	240-600	35-70%
ISO 6	150-240	25-40%
ISO 7	60-150	15-25%
ISO 8	5-60	5-15%

Limitations on ACH

 how much air can you afford to condition to meet your needs

> <u>RULE OF THUMB</u> – conditioned makeup air can cost 5x as much as conditioned recycled, mixed air

 how much air conditioning can your system achieve

Flow vs Differential Pressure

- quantity vs direction
- volume (cfm) vs velocity (fpm)
- Issues with Differential Pressure
 whole building vs single rooms
 - impact of doors open
- Issues with Flow
 - eddies
 - \circ dead zones
 - limited flow paths (e.g. supply short-circuiting to exhaust)

P_2

P.

Best case scenario for air flow - Clean Rooms

size and position of conditioned makeup air and exhaust

Worst case for sustainable operations - Clean Rooms

• EXPENSES of -

• construction

ongoing maintenance requirements

• energy consumption

Additional flow considerations

- Locations of key items
 - $\circ\;$ responsible for fume production
 - $\circ\;$ vulnerable to dust contamination
- Locations of supply and exhaust
 - \circ air flow paths
 - \circ proximity to doors

Case Study #2 – Hoods Alarming

- irregular occurrences
- different rooms
- different styles of hoods
- multiple hoods going off at once

Variable Air Volume Fume Hoods (VAV)

- VAV Hood Components
 - Sash position sensor
 - hood damper
 - General exhaust damper
 - Supply air control

Room VAV Implementation Issues

- Occupancy
 - building hours and setbacks
 - room sensors
 - fume hood use sensors (i.e. motion sensors)

- User Effects on Pressurization
 - operational windows
 - door closure?

Figure 1 - Typical Location of Main Components

Room VAV Control communications

- hood flow adjustment
- room supply adjustment
- general exhaust adjustment
- possible points of malfunction
 - \circ software
 - o sensor
 - VAV actuator

DDC (Direct Digital Control, ~ca. >=2009)

pneumatic controls challenges

- higher energy consumption (due to pressure differential needed btwn supply and exhaust to activate the damper)
- drift out of calibration easily
 - due to moisture in the lines
 - accumulation of leaks
 - fatigue of diaphragms
- recalibration is labor intensive and needed on a cyclical basis
- expertise in maintaining these systems is fading
- produce a telltale (and potentially irritating) whirring sound which is the result of damper position hunting
- requires house calls to diagnose and adjust

DDC advantages

- huge energy savings due to pressure differential needed to activate damper being much smaller)
- systems can be adjusted from off site, contingent on *sufficient communication and expertise*

Case Study #3 -Temp & Humidity Extremes

- High humidity coincided with hood alarms
- High temp in a lab or office adjacent to another room or lab with excessively low temp
- Repeated maintenance requests were unsuccessful
- Donning lab coats in high heat risked compromising well-being
- Bio work requires temp in range of 68-72 deg F

Impacts of Temp & Humidity Extremes

- Reactions at "room temperature"
- Bio-related work
- Lab coat discomfort
- Office work discomfort
- Reduced initiative toward ventilation issues

Risk of Learned Helplessness

Even things that are not obvious safety hazards, if not addressed can indirectly lead to unsafe situations.

It takes a village ...

