

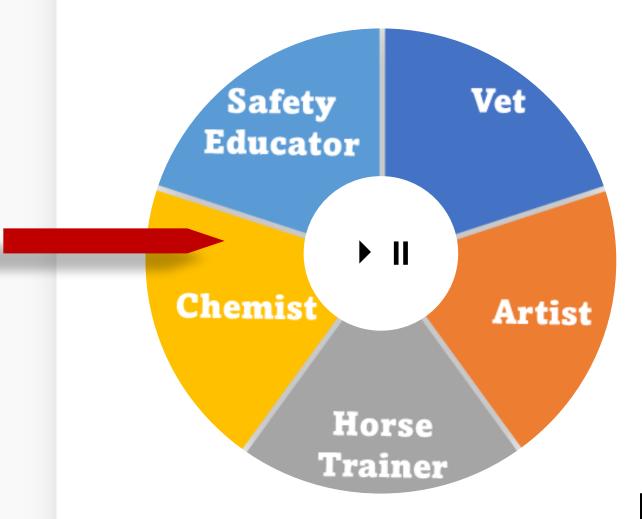
Remember: No matter where you go, there you are

Samuella B. Sigmann August 23, 2022

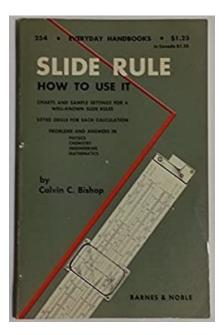
Putting It All Together

Dmitri Mendeleev

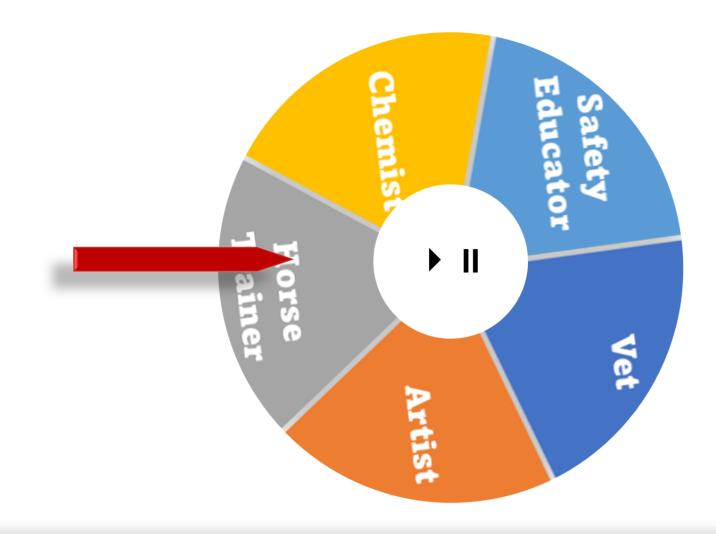
ОПЫТЪ СИСТЕМЫ ЭЛЕМЕНТОВЪ,


ОСНОВАННОЙ НА ИХЪ АТОМНОМЪ ВѢСѢ И ХИМИЧЕСКОМЪ СХОДСТВѢ.

			Ti=50	Zr= 90	?=180.
			V=51	Nb= 94	Ta=182.
			Cr=52	Mo= 96	W=186.
			Mn=55	Rh=104 ,4	Pt=197,1.
			Fe=56	Ru=104 ,4	Ir=198.
		Ni	=Co=59	Pd=106,6	Os=199.
H=1			Cu=63,4	Ag=108	Hg=200.
	Be= 9,4	Mg=24	Zn=65,2	Cd=112	
	B=11	Al=27,3	?=68	Ur=116	Au=197?
	C=12	Si=28	?=70	Sn=118	
	N=14	P=31	As=75	Sb=122	Bi=210?
	O=16	S=32	Se=79,4	Te=128?	
	F=19	Cl=35,5	Br=80	I=127	
Li=7	Na=23	K=39	Rb=85 ,4	Cs=133	Tl=204.
		Ca=40	Sr=87,6	Ba=137	Pb=207.
		?=45	Ce=92		
		?Er=56	La=94		
		?Yt=60	Di=95		
		?In=75,6	Th=118?		


Д. Менделѣевъ

We are all a product of our life experiences. Learning to utilize learned experiences and making choices based on interest and ability took me to unexpected heights.


Additionally, utilizing rejections made me resilient.

High School Chemistry

1		D	1	9122	1	11 GPE 1	069	WASHKA	GGYM	600 1 10
1	S	10000			1.	2SEM STDY	036	MACADAM	C008	
5		and the second				US HIST	091	TARAS	A018	B'B'B'C'B'B'A'B
						SPAN IIA	011	EDELMAN	B009	A'ABBBBBCB
2					1	DUACE TTT	032	INHNSON TO THE L	A013	C'B'C'C'B'C'B'C
14		U	0	1084	0	CUEM D	070	WHITE	B006	C'C'E'E'D'B'CD
5		U	3		-	CHEM B				BBCCCCCC
6		5	3	3074	-	GEUM	000	MUNFAKH	MUST	

Nitrofurazone/DMS O for Horses

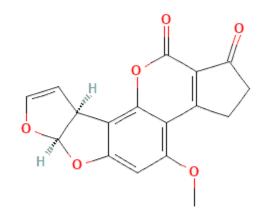
NITROFURAZONE / INITROFURAZONE / INITROFURAZONE / INITROFURAZONE / INITROFURAZONE /

Nitrofurazone is an antibacterial used to treat skin and wounds in horses.

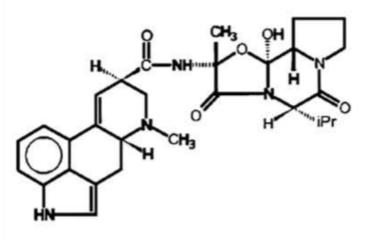
Nitrofurazone/DMSO for Horses

- I learned 40 years ago that DMSO was a carrier agent that enhanced the absorption of other therapeutics.
- I learned to wash my hands BEFORE applying the treatment and to wear gloves.
- I also learned that I am a taster.

Nitrofurazone/DMSO for Horses


The oral LD_{50} of dimethyl sulfoxide in the dog is greater than 10 gm/kg.

However, careless use can result in exposure to a toxicant.


Horses are Very Susceptible to Mycotoxins

Aflatoxins (Aspergillus)

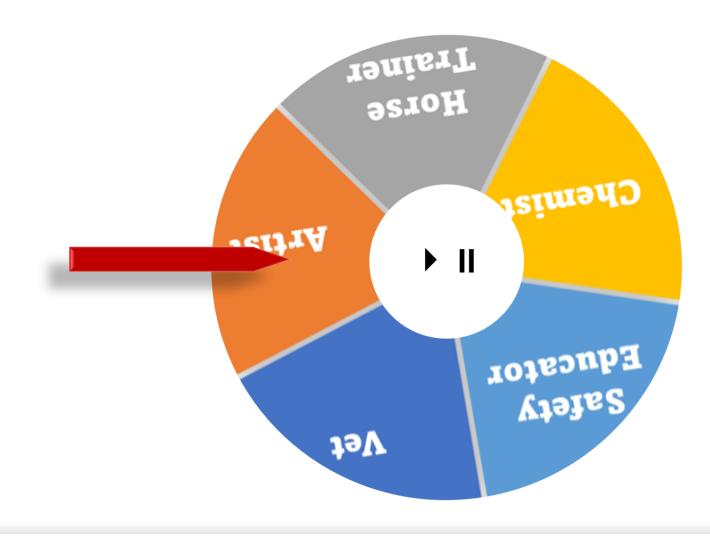
Fescue Toxicosis

Ergovaline

Aflatoxin B1 PubChem

R Fayrer-Hosken et al Vol 28, No 11 (2008) Journal of Equine Veteranary Science

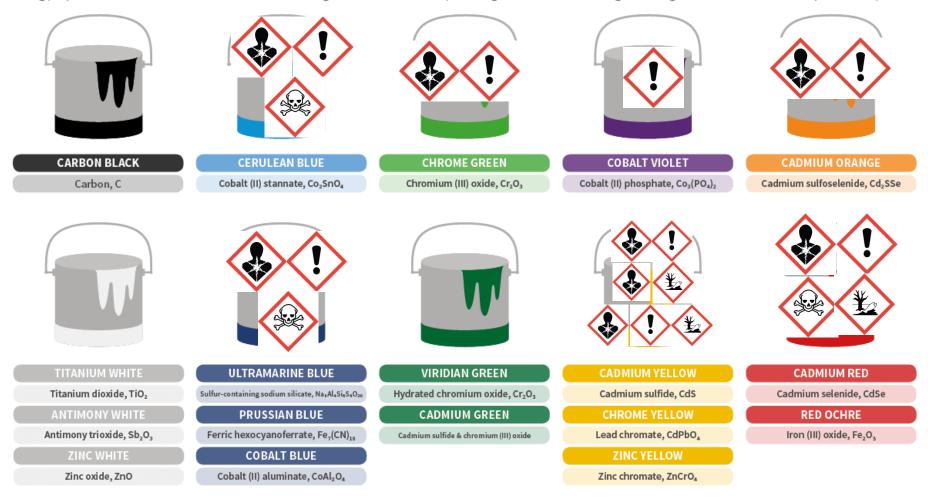
Horseshoeing


I learned that unless it is red, hot metal looks just like cold metal.

nation

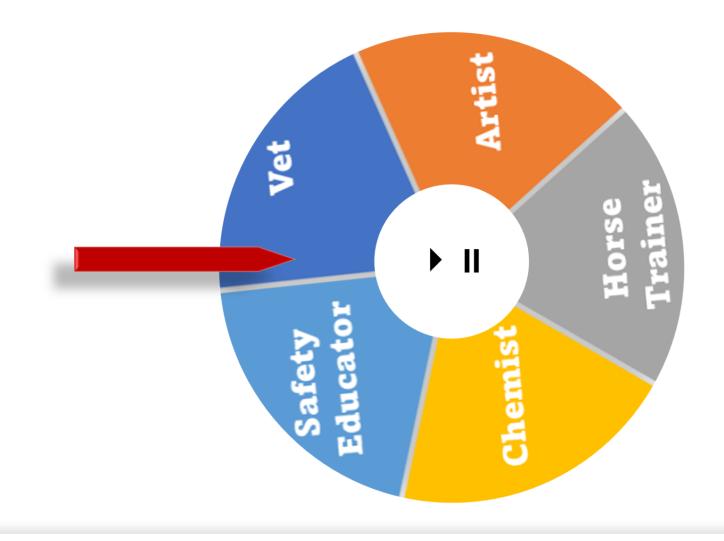
Pigments are not just pretty colors

There are a lot of acutely and chronically toxic pigments.

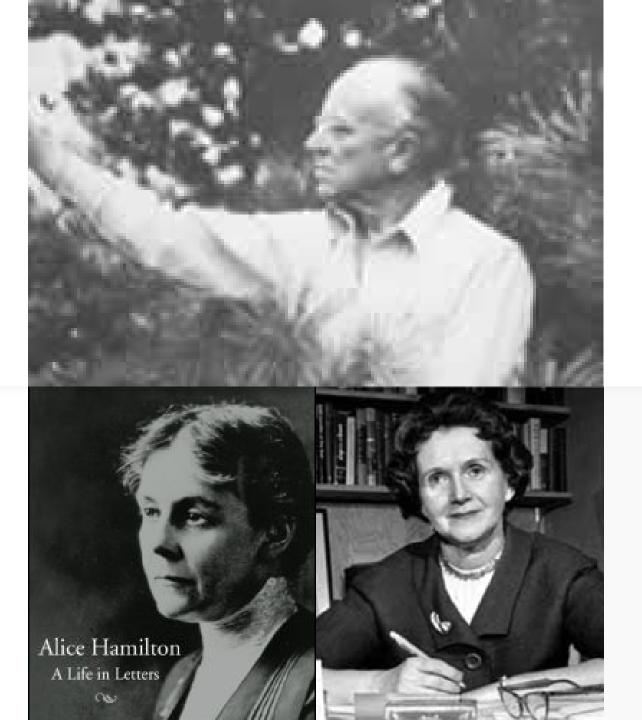

Со	Cr	Ва	Hg	Ar	Cd	Pb
Azurite Cobalt Blue Cobalt Violet Cerulean Smalt	Chromium Oxide Green Terre Verte Viridian	Barium Yellow	Vermilion (Cinnabar)	Realgar Orpiment Emerald green	Cadmium Yellow Cadmium Red	Lead-Tin Yellow Massicot Naples yellow Lead White Minium

INORGANIC PAINT PIGMENT COMPOUNDS

During this time, I learned not "point" your brushes with your mouth...


Ci

A number of inorganic compounds can be used as pigments in paints. Many of these compounds are coloured due to the absorption of light energy by electrons in d orbital subshells, meaning we see colours depending on which wavelengths of light are not absorbed by the compound.


© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

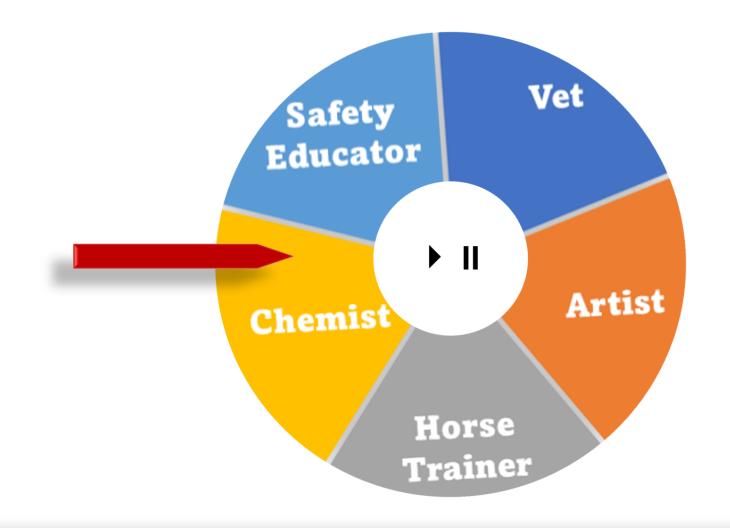
20th Century Advocates

Aldo Leopold (1887 – 1948) Alice Hamilton (1869 – 1970) Rachel Carson (1907 – 1964)

FIXATION OF SUSF

Corrosive Acute Toxic

	A. Preparation of tissue	Signal	Danger			
	 Obtain culture of unicellular organisms. These usually require water heated to 60° C and mixed thoroughly until it dissolves 		H300: Fatal if swallowed [Danger Acute toxicity, oral]	listilled		
	2. Cool the material until it gels and then cut the material into 1	GHS Hazard Statements	H310: Fatal in contact with skin [Danger Acute toxicity, dermal]			
B. Fixati	B. Fixation		H314: Causes severe skin burns and eye damage [Danger Skin corrosion/irritation]			
	 Transfer tissue to a vial of 3% glutaraldehyde in 0.1 M cacod After one hour, transfer material to refrigerator at 4° C. 		H330: Fatal if inhaled [Danger Acute toxicity, inhalation]	t results!		
	2. Tissue may be processed immediately or held up to several monors in a monoring solution of 0. First caccordinate burlet at prior instation at + -0.					
	3. Rinse tissue with three changes of cold buffer. 10 minutes per change.					
	4. Postfix in cold 2% osmium tetroxide (mixed 1:1.4% osmium with the 2X buffer) for 30 minutes to 2 hours on ice or in the refrigerator. Work with uncapped osmium solutions only under the fume hood.					


5. Rinse tissue with cold buffer for 10 minutes.

C. Dehydration

- 1. Dehydrate the tissue using the following concentrations of ethanol in a cold graded ethanol series (10 minutes per change): 30%, 50%, 70%, 80%, 90%, 100%. If you have to stop at any point in the dehydration process 70% ethanol is best.
- 2. Continue dehydration with two more changes of cold 100% ethanol (10 minutes per change).
- 3. Follow cold 100% ethanol with one 10 minute change of cold (1:1) 100% ethanol : propylene oxide. Use propylene oxide in the fume hood.
- 4. Complete dehydration with three changes of propylene oxide in the refrigerator, 10 minutes per change. Bring the tissue slowly to room temperature.

D. Infiltration

- 1. Infiltrate tissue using the following concentrations of Spurr's resin, approximately 2-4 hours per change or longer: (1:2) Spurr's resin : prop. oxide, (2:1) Spurr's resin : prop. oxide. Refractory material may take up to one day per change.
- 2. Use two changes of 100% Spurr's resin (2 hours or more per change).
- 3. Embed in fresh Spurr's resin (less than one day old). Polymerize for 6 to 8 hours at 70° C.

Chemistry

They have calculators now!! Yeah.

Reactivity of Nitric Acid

All of my graduate research required using $1+1 \text{ HNO}_3$.

Our AAS lab sink had glass traps and my research advisor warned that any combination of nitric acid and acetone would likely blow the glass trap.

I did not even allow acetone or other solvents in the lab.

All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither, Seep roots are not reached by the frost.

From the ashes a fire shall be woken, A light from the shadows shall spring; Renewed shall be blade that was broken,

The crownless again shall be king.

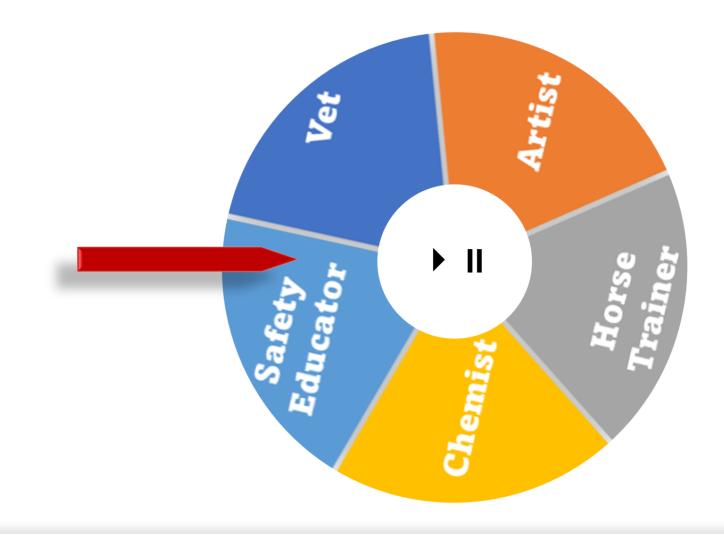
— I.R.R. Tolkien, The Fellowship of the Ring

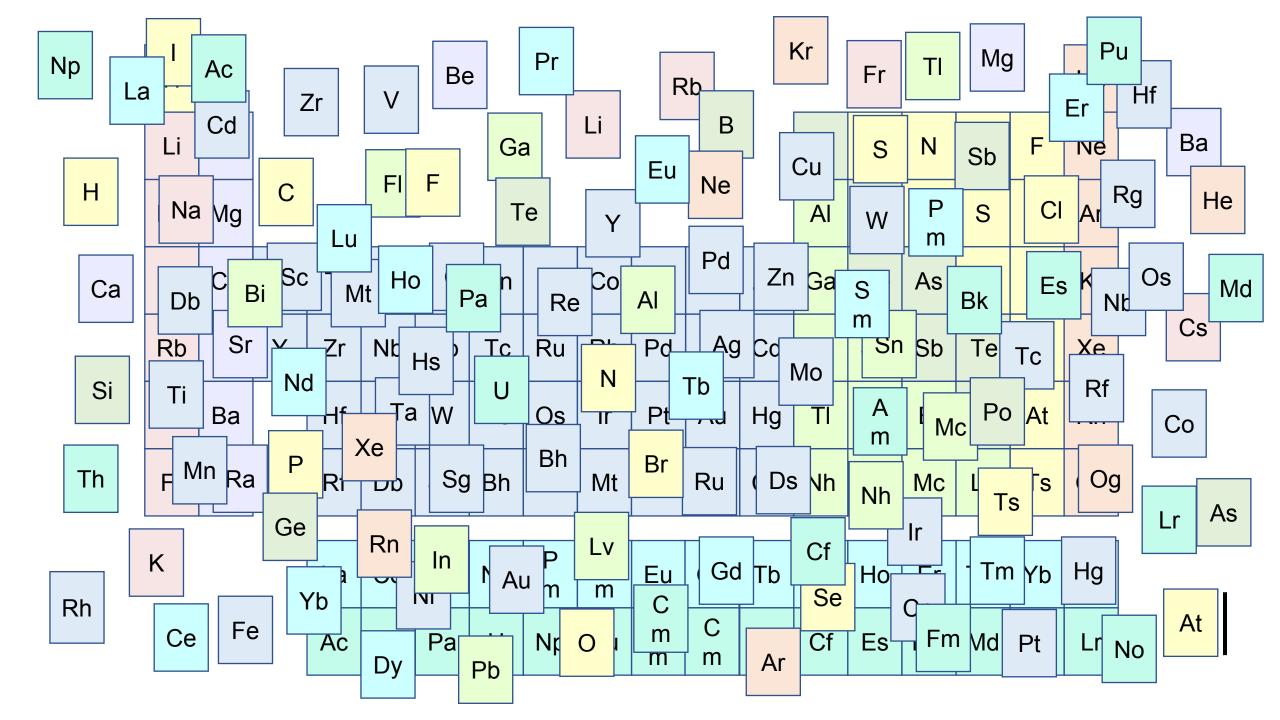
So, Where Was I?

FROM HORSES

- I learned chemicals could be absorbed.
- I learned that hazards can be isolated to minimize risk and that routines (SOPS) minimize risk.
- I learned that there are many plant toxins that affect horses and humans.

FROM BIOLOGY


- I learned about how toxins affect systems.
- I learned how toxicants affect reproductive development.
- I learned that osmium tetroxide is nasty stuff....
- I learned about environmental pollutants, responsible use of chemicals, bioaccumulation, and biomagnification.
- I learned about inhalation hazards ventilation in labs.


FROM ART

- I learned that toxicants can be ingested.
- I learned that solvents cause dermatitis and dissolve gloves.

FROM CHEMISTRY

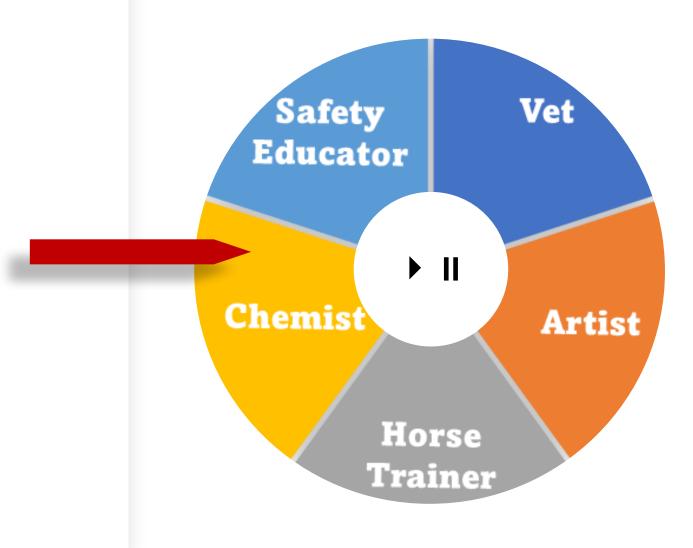
I learned not to mix nitric acid with acetone – and a lot of other stuff....

Lifelong Leadership Skills

Work hard

Be resilient

Adapt


Know your own worth

Say "yes"

Do a lot of things until you find out what you are good at because everything you learn will make you better at that job...

Don't be afraid to spin the wheel.

Thank you!

