A recent analysis of the current guidance from more than 100 academic institutions’ Chemical Hygiene Plans (CHPs) indicates that the burden to implement laboratory reproductive health and safety practices is often placed on those already pregnant or planning conception. This report also found inconsistencies in the classification of potential reproductive toxins by resources generally considered to be authoritative, adding further confusion. This panel will discuss these findings reported in the *Journal of American Chemical Society* and provide environmental health and safety and medical perspectives on the questions that it raises.
Learning Objectives

- After this webinar, you will understand the current state of knowledge relative to the potential reproductive health impacts of laboratory work, including chemical, biological and physical concerns
- Identify questions that people considering pregnancy or currently pregnant should ask about their work in the laboratory
- How to find and evaluate literature resources related to reproductive health issues in the lab

Audience Survey Question

What are the barriers that you perceive to reporting a pregnancy by the lab workers?

- A) Concerns about impacts on professional development
- B) Concerns about being allowed to work in a laboratory
- C) Lack of scientific information about reproductive health risks with exotic material
- D) Social concerns related to pregnancy

* If your answer differs greatly from the choices above tell us in the questions window!
Increased Attention to Lab Safety

- Over the past decade there have been significant efforts at improving laboratory safety
- Still a lack of clear guidance pertaining to reproductive health within laboratories
 - Reference material does not contain information pertaining to reproductive health or information is conflicting between sources
 - Often framed as a female issue, when half of our genetics come from males

Current Information

- Reference material does not contain information pertaining to reproductive health or information is conflicting between sources
- Exposure of men or women to reproductive toxins can lead to:
 - Infertility
 - Reduced fertility
 - Genetic damage to germ cells
 - Pre-term birth
 - Low birth weight
 - Fetal central nervous system malformation
- Often framed as a female issue
 - Puts the onus on women to create safe working environments
 - Because reproductive health is a male and female issue, protecting just women is not sufficient
Safety Models

Unified protection – universal model – safety model in which all workers follow the recommended guidelines for protection of the group which is most sensitive to chemical exposure

Differentiated protection – individualistic model – aims to protect the sensitive group by reducing only the exposure of that group

Reasons why differentiated protection is not enough:
- unplanned conception
- when pregnancy is not immediately known
- bioaccumulation effects

Available Information

Chemical Hygiene Plans (CHPs) – a common first resource that a laboratory worker references to begin research on reproductive toxin exposure

- **Purpose:** safety manuals that inform laboratory workers of chemical dangers as well as proper workplace safety practices
- Required document by OSHA’s Laboratory Standard
- No requirement for who writes this document
- Data comes from various sources (often uncited)
- No required section on reproductive health – allowing institutions to formulate their own guidance

Assessment of University CHPs

- CHPs from the top 100 ranked US graduate chemistry programs were assessed (105 were assessed due to ties in rankings)

Accessibility
Assessed by a Google search for "[school name] chemical hygiene plan" to see whether the CHP appeared in the first page of results

Accessibility Results
- 87 appeared within the first page of results
- 6 were found after further searching
- 12 were not found at all

Reproductive Health within CHPs
- 31 had a section on reproductive health safety within the Table of Contents
- 54 mentioned "pregnan[cy][t][l]" or "male [reproductive health]" (or both) anywhere in the document
Assessment of University CHPs

• CHPs from the top 100 ranked US graduate chemistry programs were assessed (105 were assessed due to ties in rankings)

Accessibility Results
• 87 appeared within the first page of results
• 6 were found after further searching
• 12 were not found at all

Reproductive Health within CHPs
• 31 had a section on reproductive health safety within the Table of Contents
• 54 mentioned "pregnan[cy][t]” or “male [reproductive health]” (or both) anywhere in the document

Language within CHPs
• 17 only mentioned pregnancy
• 9 only mentioned male reproductive health
• 28 mentioned both female and male reproductive health

The language used implies
 o reproductive health only affects certain groups
 o sensitive group should take on the responsibility creating a safe work environment

General summary: CHPs suggest the use of a differentiated protection model – which, as stated before, is not sufficient for protection of everyone
Additional Resources from CHPs

Reproductive health is a personal topic, so we wanted to further evaluate the discreet resources to see how well they advised researchers

Non-discreet resources:
• Environmental Health and Safety office
• Principal Investigator
• Primary Care Physician

Discreet resources:
• Safety Data Sheets (SDSs)
• NIOSH Pocket Guide (NPG)
• Proposition 65 (Prop. 65)
• Lists of reproductive toxins within the CHPs

Comparison of Discreet Resources

• How the top 107 reproductive toxins from CHPs are classified via SDS, NPG, and Prop. 65

With Dr. Sarah Jane Mear
Common “Reproductive Toxins”

- 14 most reported reproductive toxins from CHPs as well as their SDS, NPG, and Prop. 65 classification

| CAS | Chemical Name | Occurrence in CHPs | Reproductive Information Found in:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7439-92-1</td>
<td>lead</td>
<td>23</td>
<td>SDS</td>
</tr>
<tr>
<td>75-15-0</td>
<td>carbon disulfide</td>
<td>23</td>
<td>NPG</td>
</tr>
<tr>
<td>108-88-3</td>
<td>toluene</td>
<td>22</td>
<td>Prop. 65</td>
</tr>
<tr>
<td>71-43-2</td>
<td>benzene</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>75-21-8</td>
<td>ethylene oxide</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>vinyl chloride</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-dibromo-3-chloropropane</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>cadmium</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>75-12-7</td>
<td>formaldehyde</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>109-86-4</td>
<td>ethylene glycol monomethyl ether</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>xylene</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>50-00-0</td>
<td>formaldehyde</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>50-18-0</td>
<td>cyclophosphamide</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>chloroform</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Merits of Each Resource

Chemical Hygiene Plans (CHPs)
- **Pros:** available in all labs with hazardous chemicals
- **Cons:** lack of expert oversight regarding contents

Safety Data Sheets (SDSs)
- **Pros:** available for all commercially available chemicals
- **Cons:** lack of expert oversight regarding contents

NIOSH Pocket Guide (NPG)
- **Pros:** contents provided by scientists/experts in the field, includes only chemicals that have PELs and RELs
- **Cons:** not an inclusive list because only includes chemicals with PELs and RELs

Proposition 65
- **Pros:** contents provided by scientists/experts in the field, includes all chemicals that could potentially be reproductive toxins
- **Cons:** does not contain exposure limits
Conclusions and Recommendations

Opportunities for improvement of university CHPs:

• All CHPs contain a section on reproductive health (using inclusive language)
• Include recommended resources with explanations of how to best utilize each source

General laboratory recommendations:

• Help normalize conversations pertaining to reproductive health by having laboratory level discussions – help shift away from a differentiated safety model towards unified protection

Is the issue of reproductive health an important consideration for your laboratory group?

• A) We have not faced this issue before
• B) We have had concerns about this issue raised, but weren’t sure how to address them
• C) We have people who researched this issue on their own and changed their laboratory practices as a result
• D) Our lab team discusses the issue as group, and we have a proactive plan for how to respond if someone in the laboratory becomes involved in a pregnancy

* If your answer differs greatly from the choices above tell us in the questions window!
Environmental Health and Safety Perspective

Robin Izzo, MS
Assistant Vice President
Environmental Health and Safety
Princeton University

RISK = f(Hazard, Exposure, Vulnerability)

- **Control the hazard**
 - Replace with less hazardous

- **Control the exposure**
 - Reduced time
 - Reduced quantity
 - Engineering controls
 - Personal protective equipment
 - Respiratory protection

- **Stage of pregnancy may matter**

Graphic source: https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380
Princeton EHS Process

Initial Consultation Lab Review/Visit EHS Report Discussions

- Primer on Reproductive Toxins

OPEN or CONFIDENTIAL

Benefits of Sharing News

- Enables conversation
- Removes speculation
- Lab mates may take less risk and be more careful around the individual
- Able to discuss options for reducing risk, as appropriate
Princeton EHS Process

- Visit is optional and can be confidential
- Conditions, materials, operations
- Safety record for the lab
- List of most commonly used chemicals

Princeton EHS Process

- Summary of known or suspected reproductive hazards
- Recommendations
- Information to share with OB/GYN, fertility, or healthcare providers

anthracene
- Crystalline material, white when pure, yellow/green/blue when impure. Not volatile.
- Skin contact may cause mild irritation. May cause photosensitivity upon skin contact.
- Toxicological information for anthracene specifically is limited. Due to its similarity of structure with benz(a)pyrene, there is some concern that toxic effects may be similar.
- Anthracene is not listed as a carcinogen by NTP, IARC, OSHA or ACGIH. However, benz(a)pyrene is a suspected human carcinogen.

Issues for Pregnant Women
- Specific information is not available. Benz(a)pyrene (BaP) is suspected to be embryotoxic and teratogenic.
- BaP has been shown to cause reduced fertility in animal studies.
- It is not known whether anthracene crosses into the placenta or leaches into breast milk.

Recommendations
- Wear gloves and eye protection when working with anthracene.
- Nitrile gloves offer good resistance to anthracene.
- Avoid direct exposure.
Princeton EHS Process

- Discuss recommendations with PI, supervisor, others
- Provide tips for discussing with others in the lab
- Consider options

![Image](https://ehs.princeton.edu/)

https://ehs.princeton.edu/

Pregnancy and Stress

- Consider mental health, not just laboratory risk
Do you know who would consult about reproductive health issues in your lab?

- A) I would avoid discussing this concern with people in the lab, as it might impact their perception of my commitment to the group’s work
- B) I am comfortable discussing this issue with my co-workers, but I wouldn’t want to bring it to the attention of laboratory management
- C) I have discussed this issue with our laboratory manager and we share a common understanding of potential concerns
- D) I have reviewed my institution’s reproductive health policies and support services and understand my rights and responsibilities in this regard

* If your answer differs greatly from the choices above tell us in the questions window!
All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy -- Paracelsus, 1567

- 2007: Jury rules against radio station after woman dies in water drinking contest
- 2012: Tragic case involving 12-year-old girl following a game of “water poker”

Precautionary Principle

- Protective actions can and should be taken before definitive proof has been established of potential harm from use of any chemical with suspected toxic impacts on human or environmental health
- In 2003, San Francisco became the first U.S. city to adopt a Precautionary Principle ordinance:

 “Where threats of serious or irreversible damage to people or nature exist, lack of full scientific certainty about cause and effect shall not be viewed as sufficient reason for the City to postpone cost effective measures to prevent the degradation of the environment or protect the health of its citizens. Any gaps in scientific data uncovered by the examination of alternatives will provide a guidepost for future research but will not prevent protective action being taken by the City. As new scientific data become available, the City will review its decisions and make adjustments when warranted.”

Risk Stratification

- Where does this leave us? Relying on common sense and pragmatism or worried/concerned?

Describe the potential hazards present?

A) Respiratory
B) Dermal
C) Ergonomic
D) Noise / Vibration
E) Emotional Stress
Risk Stratification: Questions to Consider

1. What is the end point?
 - Acute or chronic?

2. What is the outcome of interest?
 - Acute or chronic?

3. Contributing Factors
 - Exposure Frequency and Chronicity
 - Daily activity versus sporadic or unique?
 - Potential Routes and types of exposure
 - Respiratory vs dermal vs oral; fume vs dust vs liquid
 - Lab Conditions
 - Local ventilation
 - PPE availability: Selection and compliance
 - Personal risk factors
 - Age, underlying medical conditions, nutritional status

4. Prevention requires a baseline awareness of the potential hazard, toxic or otherwise
 - Soda and diabetes, Bleach and ammonia, Arsenic and brown rice (and the or this)

Health Impacts: Lead Exposure

- **During pregnancy**
 - Lead crosses placenta in plasma (1% of circulating maternal levels) most notably at 12-14 weeks
 - Miscarriage (BLL > 5.0), stillbirths; for men: oligospermia, loss of libido
 - Fetal lead exposure has an adverse effect on neurodevelopment
 - In utero exposure (maternal BLL 14): lower birth weight, neural tube defects, neuropsych effects
 - May be most pronounced in the first trimester

- **Childhood impact**
 - Deficits in cognitive and academic skills associated with lead exposure occur at blood lead levels < 5 µg/dL
 - This includes diminished learning ability, memory, auditory and language processing
 - Aggression, hyperactivity, antisocial behaviors, impulsivity, distractibility
 - Persist after controlling for SES, race, region, These effects persist through high school
 - No safe blood lead levels in children have been identified

- **Later in life**
 - Impact from lead mobilization due to osteoporotic bone resorption
 - 1996 study compared women (mean age 70.5 years) with BLL >8 µg/dl and BLL <3 µg/dl
 - Slower reaction times
 - Poorer performance on cognitive measures
Reproductive Health Assessments: Barriers to Reporting

DISCLOSURE BARRIERS
• Concerned about adverse impact on job
 – **Short-term**
 » Viewed as working less or being less devoted to job
 » Increased workload for coworkers
 – **Longer-term**
 » Passed over for projects, promotions, salary raises
 » Perception that will not be around due to childcare obligations or 2nd child/pregnancy
• Personal intrusion
 – Coworkers knowing private matters
 – Want to wait until pregnancy clearly progressing, without miscarriage
• Guilt
 – Dual-sided: Supervisor and employee/student
• Unaware or unanticipated pregnancy

PROCESS BARRIERS
• Program or risk information not easily available
 – Unclear if confidential path for workplace reporting
• Concerned about job removal if report

Reproductive Health Assessments: Role of the Occupational Health Clinician

Trained in Hazard Identification
• Heavy metals / Organic Solvents / Anesthetic Gases
• Radiation/ noise / heat stress
• Ergonomics and musculoskeletal injury / Work stress
• Infectious disease risks / animal allergy

Facilitator
• EH&S: Risk-reduction and planning
 – PPE selection: Gloves and Respirators
• Personal physicians and specialists
• Absence Management, Risk Management

Clinically trained, working in healthcare setting
• Confidential resource
• Cannot disclose without authorization

What will I come away with?
• Certainty: Advocate and support
• Uncertainty: Scientific literature does not have all the answers
• Medical perspective and resource for questions
Reproductive Health Assessments: Role of the Individual

Be your own advocate at work

• Most programs do not proactively address reproductive safety and health
• Seek out advice and guidance (EH&S, MDs, PI, internet)

Evaluate your risks outside of the workplace

• Infectious disease
 – Up-to-date on vaccinations (flu, COVID)
• Diet and nutrition
 – Sugar intake / diabetes risk
 – Heavy metal exposure
 » Wash/soak/rinse rice
 » Test home water for lead; consider filtering water
 » Limit consumption of larger, predator fish
 – Eat organic, or organic-equivalent, meat
• Pesticides
 – Buy organic as possible for higher-risk fruit and vegetables (article)
• Endocrine disrupters
 – Lotions, perfumes, sunscreens
• Minimize alcohol intake / smoking / 2nd-hand smoke
• Exercise

If you became involved in a pregnancy, either as a pregnant person yourself or as the partner of a pregnant person, who would you consult for further information?

• A) I would review the relevant scientific literature
• B) I would talk with my supervisor about the situation
• C) I would talk with EHS staff about this issue
• D) I would talk with occupational or general medical professionals about this issue
• E) I would work with the obstetrician involved in the care of the pregnancy to assess any concerns

* If your answer differs greatly from the choices above tell us in the questions window!
2021-2022 References on the Topic

• A Call for Increased Focus on Reproductive Health within Lab Safety Culture
 Catherine P. McGeough,† Sarah Jane Mear,† and Timothy F. Jamison*
 https://pubs.acs.org/doi/10.1021/jacs.1c03725

• What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory
 Mary Kate M. Lane, Mahlet Garedew, Emma C. Deary, Cherish N. Coleman, Melissa M. Ahrens-Viquez, Hanno C. Erythropel, Julie B. Zimmerman, and Paul T. Anastas*
 https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380

• Pregnancy in the lab: Anna Slater 1, Claudia Caltagirone 2, Emily Draper 3, Nathalie Busschaert 4, Kristin Hutchins 5 and Jennifer Leigh 6
 Nature reviews | Chemistry
 https://www.nature.com/articles/s41570-022-00362-0

• Mom the Chemistry Professor from ACS Women Chemists Committee

ACS CHAS Led Peer Workshop

Empowering Academic Researchers to Strengthen Safety Culture

Led by Adelina Oronova, Michigan Technological University and Omar Leon Ruiz, University of California, Los Angeles
Sunday, October 9, 2022 2 – 5:30 PM
Registration for this workshop is $25 per participant.
This workshop is directed at frontline researchers in academic institutions: graduate students, postdoctoral scholars, and undergraduate students. Faculty and safety staff are also very much encouraged to participate.

Workshop Goals:
• Educate participants about the value of risk assessment
• Guide participants towards gaining awareness of safety culture messages from leadership at their institutions
• Empower participants to expand their safety networks and develop laboratory safety teams