Webinar Questions: General Lab Safety

There were 9 general lab safety topics raised by the audience.

These answers are Ralph Stuart’s; feel free to share your thoughts and follow up questions in the comments section below. (Note: the comments section is moderated, so there may be some time delay before your question shows up.)

Can you talk more about the safety & health issues in the laboratory? Specifically, what are the general policies for the hazards of broken glassware and dealing with students cut by broken glassware?

General laboratory safety issues, as well as glassware specifically are well covered by the ACS publication Safety in the Academic Laboratory. A reminder: Remember to check with the host institution for its protocols related to providing first aid before lab work starts, as glass cuts are one of the most common laboratory injuries.

How do I access or subscribe to the Journal of Chemical Health and Safety?

The Journal of Chemical Health and Safety (this link will take you to the Journal’s web site) is a member benefit of the Division of Chemical Health and Safety and is also available in many academic libraries. 

I am most concerned about the Risks (vs Hazard) within chemical reactions.

This is an important point. The risks associated with a chemical reaction are often not clear from a review of the Safety Data Sheets for individual chemicals, so further safety analysis of the process as a whole is necessary. This issue was identified by the Chemical Safety Board’s 2011 report and the ACS is working hard to support this process with the technical resources outlined in the webinar.

Two related questions:

  • Another thought is treating students like workers and getting them OSHA protection – never saw this in my time in academia, but in industry, I got a benign chemical splash between glove and coat and the reporting on that went on for 12 months and involved a lot of discussion and meetings around chemical practices
  • In 2003, U. Iowa Dept. Chemistry had an explosion from one of the grad students running a solvent still, where he was burned (3rd degree) and hospitalized.  There was a lot of controversy afterwards, because the university did not intend to cover medical bills, stating that student insurance did not cover graduate teaching assistants that were involved in lab research (only graduate research assistants were covered).  Eventually the student union became involved and this was resolved.  However, does this continue to be an issue in academia?  With respect to hazards for graduate/undergraduate research, has there been any legislation to cover students injured in an accident by workers comp/disability?

The academic laboratory is an interesting challenge in this respect. Traditionally, higher education has been what the former head of OSHA, among others, has referred to as a “fissured workplace”. This phrase describes workplaces in which employees and students work together under a wide variety of institutional relationships (e.g. full time employees, visiting scholars, tuition-paying students, volunteers, etc.). This situation presents an interesting challenge to developing and sustaining an active laboratory safety culture because the legal requirements applicable to each group will vary depending on their status and the legal jurisdiction that applies.

Do you follow OSHA 1910. 1450 requirements?

This question refers to the OSHA Lab Standard found here. This question is answered on an institution-by-institution basis. We have a Chemical Hygiene Plan at Keene State and the University of Cincinnati.

How do you apply process safety management principles in the research lab environment?

This issue is well explored by a 2009 article in the Journal of Chemical Health and Safety by Neal Langerman entitled Lab-scale process safety management. Dr. Langerman expanded on this article in a 2015 JCHAS column entitled Expand Process Safety Management

Can you explain Control Banding, and how effective it is?

Control banding is an area of active research in laboratory safety profession. The concept is to address control of laboratory hazards for a group of chemicals, rather than a process-by-process basis, in a more general way than allowed by tools such as a Job Hazard Analysis. However, control banding is complicated by the variety of physical and health hazards associated with chemical processes used in the research setting. To be effective and sustainable, an ANSI Z10 style Management System should be developed to support the control banding process.

Can we design our safety assessment checklist or we have to follow yours?

It is best practice for checklists to be as specific as possible to the laboratories that use them. General guidance for the best use of checklists can be found on the ACS hazard assessment web site here.

Any feedback from educators and researchers about the ACS Hazard Assessment webpage and tools?

The tool is still new to the world (it was released on the web in 2016), so Kendra’s case study of its use is one of the earliest we in ACS have found. We are very interested in other feedback on the tool; e-mail safety@acs.org to provide your comments.

 

Follow-up on Hazard Assessments and Fundamentals webinar

On May 11, 2017, Ralph Stuart and Dr. Kendra Leahy Denlinger presented an ACS webinar on Creating a 21st Century Chemical Research Laboratory: Hazard Assessments and Fundamentals. This webinar was co-sponsored by the DCHAS and the ACS Green Chemistry Institute.  Their slides can be downloaded from the ACS Webinar web site. The primary topic of discussion was the JHA section of the ACS Hazard Assessment web site, but other topics, including ball-milling as an alternative to solvent-based chemistry, Green Chemistry metrics and ACS lab safety resources were covered.

Because of time limits, some of the 50+ questions asked by the audience were not answered, so our response to some of the most common questions are provided here. The questions are organized into 5 categories:

  1. General Lab Safety Issues
  2. Laboratory Safety Culture Questions
  3. Risk Assessment Methods: 
  4. Green Chemistry Techniques
  5. Green Chemistry Assessment Methods: 

Click on the links above to see our responses to the audience’s questions. If you have follow-up questions, feel free to contact Ralph or Kendra by e-mail.

Webinar Questions: Laboratory Safety Culture Questions

There were four related questions and comments relative to Lab Safety Culture. 

  • Who is responsible for chemical safety in the lab? (Everyone is a fine answer, but also a dodge). I feel it starts with the supervisor/mentor and I dislike the way accident blame tends to get pushed towards the victim.
  • University chemistry depts operate funded largely by NIH/NSF/DOE grants. In awarding these grants, there are requirements to follow bio-safety, radiation safety animal welfare, student mentoring guidelines. But chemical safety is left to the local university and fire marshals to regulate. BUT there could be chemical safety requirements IF they could be clearly codified and agreed to. The enforcement comes from losing grant support BUT the key is they have to be clearly defined for what are wide ranging activities and there has to be reporting back to the granting agencies.
  • It would be good to note that Prudent Practices and Safe Science from the National Academies came out of the Board on Chemical Sciences and Technology. They also have a publication on producing Laboratory SOPs. All of them are available for free through the National Academies Press. http://dels.nas.edu/bcst/Reports-Academies-Findings
  • From my understanding, PIs are primarily responsible for ensuring that researchers who participate in their laboratories receive proper safety training prior to participating in the lab. This coincides with the outcome to the incident that occurred in California when a researcher died due to lack of training.

These comments and questions point to an interesting challenge – the decentralized, entrepreneurial nature of lab work within a larger organization.This issue is the focus of many of the safety culture resources I identified during the webinar, in particular Safe Science from the National Academies Press.  The ACS Hazard Assessment web site outlines the roles and responsibilities related to lab safety here. It is clear from the literature that chemical safety requires both leadership from lab management and empowerment of individual lab workers to be effective and sustainable over time.

What role can lab informatics and Electronic Lab Notebooks play in creating the culture of safety?

This is a very active area of research collaboration between the DCHAS and the ACS Division of Chemical Information. We are using the RAMP paradigm to identify resources and gaps in the electronic lab safety resources available to the laboratory chemist. It is important to note that education for chemists in both laboratory safety and chemical information skills is an important part of a scientific education, both in terms of the sciences of information management and risk management and in practice of these skills while chemistry lab work is being practiced.

These answers are Ralph Stuart’s; feel free to share your thoughts and follow up questions in the comments section below. (Note: this section is moderated, so there may be some time delay before your question shows up.)