Tag Archives: Technical Presentations

March, 2018 Webinar Follow-up

In the 21st century, chemistry research is more varied and expansive than ever before, the rules that keep one lab safe will not adequately address the possible risks in others. Rather than having a universal set of rules, a more adaptive system is needed for both academic and industry labs. Ralph Stuart, Chemical Hygiene Officer at Keene State College, and Samuella Sigmann, Senior Lecturer at Appalachian State University, propose a new way of thinking that builds a dynamic safety system based on your own needs and conditions as well as provides resources on how such programs can be developed.

You can download a PDF of the presentation here.

The webinar was attended by over 850 people, who asked many more interesting questions than we were able to answer during the webinar. We built a web page to answer questions we didn’t get to and  provide our initial answers. Some of these questions have many possible answers. Let us know if you have comments or questions on what we’ve said or ask an additional question on the web page.

In case you’re curious, you can see what some of the comments from those who attended in the 2018-03-08 Safety Webinar Speaker Feedback infographic.

 

JCHAS Editor’s Spotlight: A methodology on how to create a real-life relevant risk profile for a given nanomaterial

The Editor’s Spotlight for the January / February 2018 issue of the Journal of Chemical Health and Safety is shining on:

A methodology on how to create a real-life relevant risk profile for a given nanomaterial
by Christa Schimpel, Susanne Resch,  Guillaume Flament,  David Carlander, and Izaskun Bustero

The abstract for this Open access article is:

With large amounts of nanotoxicology studies delivering contradicting results and a complex, moving regulatory framework, potential risks surrounding nanotechnology appear complex and confusing. Many researchers and workers in different sectors are dealing with nanomaterials on a day-to-day basis, and have a requirement to define their assessment/management needs.

This paper describes an industry-tailored strategy for risk assessment of nanomaterials and nano-enabled products, which builds on recent research outcomes. The approach focuses on the creation of a risk profile for a given nanomaterial (e.g., determine which materials and/or process operation pose greater risk, where these risks occur in the lifecycle, and the impact of these risks on society), using state-of-the-art safety assessment approaches/tools (ECETOC TRA, Stoffenmanager Nano and ISO/TS 12901-2:2014).

The developed nanosafety strategy takes into account cross-sectoral industrial needs and includes:

  • (i) Information Gathering: Identification of nanomaterials and hazards by a demand-driven questionnaire and on-site company visits in the context of human and ecosystem exposures, considering all companies/parties/downstream users involved along the value chain;
  • (ii) Hazard Assessment: Collection of all relevant and available information on the intrinsic properties of the substance (e.g., peer reviewed (eco)toxicological data, material safety data sheets), as well as identification of actual recommendations and benchmark limits for the different nano-objects in the scope of this projects;
  • (iii) Exposure Assessment: Definition of industry-specific and application-specific exposure scenarios taking into account operational conditions and risk management measures;
  • (iv) Risk Characterisation: Classification of the risk potential by making use of exposure estimation models (i.e., comparing estimated exposure levels with threshold levels);
  • (v) Refined Risk Characterisation and Exposure Monitoring: Selection of individual exposure scenarios for exposure monitoring following the OECD Harmonized Tiered Approach to refine risk assessment;
  • (vi) Risk Mitigation Strategies: Development of risk mitigation actions focusing on risk prevention.

This article and the rest of the issue can be found at ScienceDirect site

Also included in this issue of JCHAS are:

Don’t ever tell me…
Harry J. Elston

Photocatalytic degradation of phenol solution using Zinc Oxide/UV
Original research article
H. Dewidar, S.A. Nosier, A.H. El-Shazly

A methodology on how to create a real-life relevant risk profile for a given nanomaterial
Open access – Original research article
Christa Schimpel, Susanne Resch,  Guillaume Flament,  David Carlander, and Izaskun Bustero

A case history of legacy chemical cleanup in the lab
Original research article
L.C. Cadwallader, R.J. Pawelko

Development of custom calibration factors for respirable silica using standard methods compared to photometric monitoring data
Pages 27-35
Leon F. Pahler, Danielle D. McKenzie-Smith, Rodney G. Handy, Darrah K. Sleeth

Engineering intervention to reduce API dust exposure during milling operation
Original research article
Vivek Kanjiyangat, Manikandan Hareendran

UPCOMING EVENTS

Safety Presentations from the Atlantic Basin Conference on Chemistry

ACS Safety Initiatives: Impact On The Global Chemistry Enterprise
Neal Langerman

US safety initiatives as influences on global laboratory safety
Russ Phifer

Approaching research and scale-up safety through process-oriented solutions
Harry J. Elston, Ph.D., CIH

Social and Ethical Implications (SEI) of Nanotechnology
Larry Gibbs, CIH, FAIHA

Analyzing academic laboratory accidents to prevent accidents
Craig Merlic

Risk Perception in Academic Laboratories
Imke Schroeder, Ph.D.

SERMACS Lab Safety Stories Symposium

 

Learning Laboratory Safety Through Storytelling

The story of chemical safety in the 20th (and 21st) century. R. Stuart

How does an EHS professional engage their audience?. M.B. Koza

Using learning points to create a sound safety baseline. K.W. Kretchman

A series of unfortunate events: A personal story. S.B. Sigmann

Stories of laboratory incidents teach us lessons about safety. R.H. Hill

 

Webinar on Strategies for Chemical Threat Reduction

Avoiding the Next Chemical Catastrophe: Strategies for Chemical Threat Reduction

Co-sponsored by

October 19, 2017 @ 2:00pm ET

Every lab has chemicals that are vital to research and experimentation but these same chemicals whether you are in industry or academia, can be stolen and used by non-state actors for malevolent acts. Join Andrew Nelson of Sandia National Laboratories as he introduces strategies to mitigate the risks that small labs and universities face with theft of chemicals for chemical weapons, explosives, and illicit drug production.

Register at https://www.acs.org/content/acs/en/acs-webinars/popular-chemistry/threat.html

What You Will Learn

  • Why chemical security is important to all labs with current examples of incidents
  • What considerations must be made in a security risk management system
  • How chemical security is a teachable skill and what resources are available to you today

Webinar Details

  • Date: Thursday, October 19, 2017 @ 2-3pm ET
  • Fee: Free to Attend
  • Download slides after presentation

 

Catching up with Runaway Hot Plates

Attached to this link is a PDF version of the poster below on Runaway Hot Plates. This poster was part of the DCHAS collection at the 2017 SciMix sessions in Washington, DC. Questions about the poster should be directed to the authors:

  • Kimberly Brown of the Office of Environmental Health and Radiation Safety at the University of Pennsylvania, Philadelphia, PA,
  • Mark Mathews of the Environmental Safety and Health Directorate, at Oak Ridge National Laboratory, Oak Ridge TN and
  • Joseph Pickel of the Physical Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge TN

Developing a Safety Culture

Institutional & Enterprise Level Efforts to Developing a Safety Culture

The Chemical Safety Board: Safety is good business and good policy. V. Sutherland

Safety Googles aren’t for nerds. T. George

Changing the federal oversight model of the Department of Energy National Laboratories. J. McBrearty

Are you prepared for a journey? K. Jeskie

Grassroots Approaches to Developing a Safety Culture

Improving Safety in the Chemical Enterprise Through Transparent Sharing of Best Safety Practices. M. Jones, L. Sellor, Dow

Back to Safety Basics at Northwestern University. M. Blayney

Building a Safety Culture: An Undergrad Perspective N. Fredstrom

OSHA’s Voluntary Protection Programs. D. Kalinowski

The Joint Safety Team: A researcher-led initiative for improving academic safety culture C. Gee

Collaborative efforts between faculty and embedded safety professionals to improve critical thinking skills of undergraduates
S. Sigmann

Building a Safety Culture Across the Chemical Enterprise

Building and Promoting SMS in the Federal Government. R. Meidl

Safety training vs safety education N. Bharti

Challenges and Rewards in Enforcing Laboratory Safety – First Year on the Job. R. Malaisamy

Safety Guidelines for the Chemistry Professional. K.P. Fivizzani

Safety Culture Partnering Faculty S. Elwood, R.M. Izzo, K. Angjelo

Development and implementation of a researcher oriented program J.G. Palmer

Establishing a Sustainable Safety Culture in Academic Research Labs. K.A. Miller

Chemophobia

Chemicals – The Good, Bad, and the Ugly S.B. Sigmann

Public Perception of the Chemical Enterprise The Good The Bad and the Uncertain. M.E. Jones

ACS role in Communicating chemical safety. J. Kemsley

Developing design principles for ‘lesson learned’ laboratory safety videos. H. Weizman

It’s no accident that many journalists don’t write clearly about lab safety incidents. B. Benderly

Hazmat event reporting in the media. R. Stuart

Risk Communication for the Chemist and Non-Chemist. R. Izzo

Emerging Trends in Research Operations

Emerging Energy Saving Technologies for Laboratories. J. Blount

Safe Application of Filtered Fume Hoods. K. Crooks

iLab operating software materials management. C. Lopes

VOC levels in Solvent Cabinets
A.E. Norton, K. Brown, W.B. Connick, A. Doepke, F. Nourain

Convergence of Research Operations and Safety: A mutually bene cial partnership K. Heard

The Role of the EHS Professional in Laboratory Design M.B. Koza

Taking safety management to the next level: Moving from assumptions to reality. S. Schwartz-Hinds, N. Watson

Designing and operating facilities to support the safe conduct of research activities. J.M. Pickel, K.B. Jeskie

Pharmaceutical industry best practices in lessons learned R.A. Sayle, J.W. May

Personal chemical exposure sensor with indoor positioning and robotics for laboratory safety. K. Brown, A. Brandes, A.E. Norton, P.B. Shaw, D.T. Neu, R. Voorhees

Hydrogen gas lab servers provide many advantages to laboratory operations. J. Speranza

Achieving a Balance Between Expansion and Cost Control – Yale University West Campus Research Operations. C.D. Incarvito