Category Archives: Safety Education

Resources for Improving Safety Culture, Training, and Awareness in the Academic Laboratory

Dr. Quinton J. Bruch, April 7th, 2022

Excerpts from “Resources for Improving Safety Culture, Training, and Awareness in the Academic Laboratory”

Full paper can be found here: https://www.sciencedirect.com/science/article/pii/B9780081026885000921?via%3Dihub

Full paper can be found here: https://www.sciencedirect.com/science/article/pii/B9780081026885000921?via%3Dihub

Theme 1: Setting Core Values and Leading By Example. 

Mission statements. …Mission statements establish the priorities and values of an organization, and can be useful in setting a positive example and signaling to potential new researchers the importance of safety. To examine the current state of public-facing mission statements, we accessed the websites of the top [a][b]50 chemistry graduate programs in the United States and searched any published mission statements for mentions of safety. [c]Although 29 departments had prominently displayed mission statements on their websites, only two (the University of Pennsylvania and UMN) included practicing safe chemistry in their mission statement (~at time of publishing in early 2021).[d][e][f][g]

Regular and consistent discussions about safety. Leaders can demonstrate that safety is a priority by regularly discussing safety in the context of experimental set-up, research presentations, literature presentations, or other student interactions[h][i]. Many potential safety teaching moments occur during routine discussions of the day-to-day lab experience.[j] Additionally, “safety minutes[k][l][m][n] have become a popular method in both industry and academia to address safety at the beginning of meetings.

Holding researchers accountable[o][p]. In an academic setting, researchers are still in the trainee stage of the career. As a result, it is important to hold follow-up discussions on safety to ensure that they are being properly implemented.[q] For example, in the UMN Department of Chemistry a subset of the departmental safety committee performs regular PPE “spot checks,”[r][s] and highlights exemplary behavior through spotlights in departmental media. Additionally, each UMN chemistry graduate student participates in an annual review process that includes laboratory safety as a formal category.[t] Candid discussion and follow-up on safe practices is critical for effective trainee development.

Theme 2: Empowering Researchers to Collaborate and Practice Safe Science.

Within a group: designate safety officers. Empower group members to take charge of safety within a group, both as individuals and through formal appointed roles such as laboratory safety officers (LSOs).[u] LSOs can serve multiple important roles within a research group. First, LSOs can act as a safety role model for peers in the research group, and also as a resource for departmental policy. Further, they act as liaisons to ensure open communication between the PI, the research group, and EHS staff. These types of formal liaisons are critical for fostering collaborations between a PI, EHS, and the researchers actually carrying out labwork. LSOs can also assist [v][w]with routine safety upkeep in a lab, such as managing hazardous waste removal protocols and regularly testing safety equipment such as eyewash stations. For example, in the departments of chemistry at UMN and UNC, LSOs are responsible for periodically flushing eyewash stations and recording the check on nearby signage[x].[y][z][aa][ab] Finally, LSOs are also natural picks for department-level initiatives such as department safety committees or student-led joint safety teams.[ac]

Within a group: work on policies as a collective. Have researchers co-write, edit, and revise standard operating procedures (SOPs).[ad] Many EHS offices have guides and templates for writing SOPs. More details on SOPs will be discussed in the training section of this chapter. Co-writing has the double benefit of acting as a safety teaching moment while also helping researchers feel more engaged and responsible for the safety protocols of the group.[ae][af][ag]

Within a department: establish safety collaborations.[ah] Research groups within departments often have very diverse sets of expertise. These should be leveraged through collaboration to complement “blind spots”[ai] within a particular group to the benefit of all involved—commonly, this is done through departmental safety committees, but alternative (or complementary) models are emerging. An extremely successful and increasingly popular strategy for establishing department-wide safety collaborations is the Joint Safety Team model.

Joint Safety Teams (JSTs). A Joint Safety Team (JST) is a collaborative, graduate student- and postdoc-led initiative with the goal of proliferating a culture of laboratory safety by bridging the gaps between safety administration, departmental administration, and researchers. JSTs are built on the premise that grassroots efforts can empower students to take ownership of safety practices, thus improving safety culture from the ground up. Since its inception in 2012, the first JST at UMN (a joint endeavor between the departments of Chemistry and Chemical Engineering & Materials Science, spurred through collaboration with Dow Chemical) has directly and significantly impacted the adoption of improved safety practices, and also noticeably improved the overall safety culture. Indeed, the energy and enthusiasm of students, which are well-recognized as key drivers in research innovation, can also be a significant driver for improving safety culture.[aj][ak]

…The JST model has several advantages[al]: (1) it spreads the safety burden across a greater number of stakeholders, reducing the workload for any one individual or committee; (2) it provides departmental leadership with better insight into the “on-the-ground” attitudes and behaviors of researchers;[am][an][ao][ap] and (3) it provides students with practical safety leadership opportunities that will be beneficial to their career. In fact, many of the strategies discussed in this chapter can be either traced back to a JST, or could potentially be implemented by a JST.

An inherent challenge with student-led initiatives like JSTs is that the high student turnover in a graduate program necessitates ongoing enthusiastic participation of students after the first generation. In fact, after the first generation of LSOs left the UMN JST upon graduation, there was a temporary lag in enthusiasm and engagement. In order to maintain consistent engagement with the JST, the departmental administration created small salary bonuses for officer-level positions within the JST, as well as a funded TA position. Since spending time on JST activities takes away from potential research or other time, it seems reasonable that students be compensated accordingly when resources allow it…[aq][ar]

3.      Training

Initial Safety Training. Chemical safety training often starts with standardized, institution-wide modules that accompany a comprehensive chemical hygiene plan or laboratory safety manual. These are important resources, but researchers can be overwhelmed by the amount of information[as][at]—particularly if only some components seem directly relevant. There is anecdotal evidence that augmentation with departmental-level training[au][av][aw] initiatives can provide a stronger safety training foundation. For example, several departments have implemented laboratory safety courses. At UNC, a course for all first-year chemistry graduate students was created with the goal of providing additional training tailored to the department’s students. Iteratively refined using student feedback, the course operates via a “flipped classroom” model to maximize engagement. The course combines case study-based instruction, role playing (i.e., “what would you do” scenarios), hands-on activities (e.g., field trips to academic labs), and discussions led by active researchers in chemistry subdisciplines or industrial research.

Continued Safety Training[ax]. Maintaining engagement and critical thinking about safety can help assure that individual researchers continue to use safe practices,[ay] and can strengthen the broader safety culture. Without reinforcement, complacency is to be expected—and this can lead to catastrophe. We believe continued training can go well beyond an annual review of documentation by incorporating aspects of safety training seamlessly into existing frameworks.

Departments can incorporate safety minutes into weekly seminars or meetings, creating dedicated time for safety discussions (e.g., specific hazards, risk assessment, or emergency action plans). In our experience, safety minutes are most effective when they combine interactive prompts[az] that encourage researcher participation and discussion. These safety minutes allow researchers to learn from one another and collaborate on safety.

While safety minutes provide continuous exposure and opportunities to practice thinking about safety, they lack critical hands-on (re)learning experiences. Some institutions have implemented annual researcher-driven activities to help address this challenge. For example, researchers at UNC started “safety field days” (harkening back to field days in grade school) designed specifically to offer practice with hands-on techniques in small groups. At UMN, principal investigators participate in an annual SOP “peer review” process, in which two PIs pair up and discuss strengths and potential weaknesses of a given research group’s SOP portfolio.[ba][bb]

Continued training can also come, perhaps paradoxically, when a researcher steps into a mentoring role to train someone else. The act of mentoring a less experienced researcher provides training to the mentee, but also forces the mentor to re-establish a commitment to safe practices and re-learn best practices[bc].[bd] Peer teaching approaches have long been known to improve learning outcomes for both the mentor and the mentee. With regards to safety training, mentors would be re-exposed to a number of resources used in initial safety trainings, such as SOPs, while having to demonstrate mastery over the material through their teaching. Furthermore, providing hands-on instruction would require demonstrating techniques for mentees and subsequently critically assessing and correcting the mentee’s technique. Additionally, mentors would have to engage in critical thinking about safety while answering questions and guiding the mentee’s risk assessments.

Continued training is important for all members of a research group. Seniority does not necessarily convey innate understandings of safety, nor does it exempt oneself from complacency. For example, incoming postdocs[be] will bring a wealth of research and safety knowledge, but they may not be as intimately familiar with all of the hazards or procedures of their new lab, or they may come from a group or department with a different safety culture. Discussing safety with researchers can be difficult, but is a necessary part of both initial and continued training.

 4.      Awareness[bf]

Awareness as it pertains to chemical safety involves building layers of experience and expertise on top of safety training. It is about being mindful and engaged in the lab and being proactive and prepared in the event of an adverse scenario. Awareness is about foreseeing and avoiding accidents before they happen, not just making retroactive changes to prevent them from happening again. There are aspects of awareness that come from experiential learning—knowing the sights and sounds of the lab—while other aspects grow out of more formal training. For example, awareness of the potential hazards associated with particular materials or procedures likely requires some form of risk assessment.

Heightened awareness grows out of strong training and frequent communication, two facets of an environment with a strong culture of safety. Communication with lab mates, supervisors, EHS staff, industry, and the broader community builds awareness at many levels. Awareness is a critical pillar of laboratory safety because it links the deeply personal aspects of being a laboratory researcher with the broader context of safety communication, training, and culture. It also helps address the challenge of implementing a constructive and supportive infrastructure.

Like any experience-based knowledge, safety awareness will vary significantly between individuals. Members of a group likely have had many of the same experiences, and thus often have overlap in their awareness. Effective mentoring can lead to further overlap by sharing awareness of hazards even when the mentee has not directly experienced the situation. Between groups in a department, however, where the techniques and hazards can vary tremendously, there is often little overlap in safety awareness. [bg][bh][bi][bj]In this section, we consider strategies to heighten researcher safety awareness at various levels through resources and tools that allow for intentional sharing of experiential safety knowledge.

Awareness Within an Academic Laboratory[bk]. …Some level of awareness[bl] will come through formal safety training, as was discussed in the preceding section. Our focus here is on heightened awareness through experiential learning, mindset development, and cultivating communication and teaching to share experience between researchers.

We have encountered or utilized several frameworks for building experience. One widely utilized model involves one-on-one mentoring schemes, where a more experienced researcher is paired with a junior researcher. This provides the junior researcher an opportunity to hear about many experiences and, when working together, the more experienced researcher can point out times when heightened awareness is needed. All the while, the junior researcher is running experiments and learning new techniques. There are drawbacks to this method, though. For example, the mentor may not be as experienced in particular techniques or reagents needed for the junior researcher’s project. Or the mentor may not be effective in sharing experience or teaching awareness. Gaps in senior leadership can develop in a group, leaving mentorship voids or leading to knowledge transfer losses. Like the game “telephone” where one person whispers a message to another in a chain, it is easy for the starting message to change gradually with each transfer of knowledge.[bm] This underscores the importance of effective mentoring,[bn] and providing mentors with a supportive environment and training resources such as SOPs and other documentation…

…Another approach involves discussing a hypothetical scenario, rather than waiting to experience it directly in the lab. Safety scenarios are a type of safety minute that provide an opportunity to proactively consider plausible scenarios that could be encountered.[bo][bp] Whereas many groups or departments discuss how to prevent an accident from happening again, hypothetical scenarios provide a chance to think about how to prevent an accident before it happens[bq][br]. Researchers can mediate these scenarios at group meetings. If a researcher is asked to provide a safety scenario every few weeks, they may also spend more time in the lab thinking about possible situations and how to handle them on their own.

Almost all of these methods constitute some form of risk or hazard assessment. As discussed in the training section, formal risk assessment has not traditionally been part of the academic regimen. Students are often surprised [bs]to learn that they perform informal risk assessments constantly, as they survey a procedure, ask lab mates questions about a reagent, or have a mentor check on an apparatus before proceeding. Intuition provides a valuable risk assessment tool, but only when one’s intuition is strong. A balance[bt] of formal risk assessment and informal, experiential, or intuition-based risk assessment is probably ideal for an academic lab.

Checklists are another useful tool for checking in on safety awareness. [bu][bv][bw]Checklists are critically important in many fields, including aviation and medicine. They provide a rapid visual cue that can be particularly useful in high-stress situations where rapid recall of proper protocol can be compromised, or in high-repetition situations where forgetting a key step could have negative consequences. Inspired by conversations with EHS staff, the Miller lab recently created checklists that cover daily lab closing, emergency shutdowns, glovebox malfunctions, high-pressure reactor status, vacuum line operations, and more. The checklists are not comprehensive, and do not replace in-person training and SOPs, but instead capture the most important aspects that can cause problems or are commonly forgotten.[bx][by] The signage provides a visual reminder of the experiential learning that each researcher has accumulated, and can provide an aid during a stressful moment when recall can break down.

A unifying theme in these approaches is the development of frameworks for gaining experience with strong mentoring and researcher-centric continued education. Communication is also essential, as this enables the shared experiences of a group to be absorbed by each individual…[bz][ca]

[a]Wondering if these were determined by us news

[b]I can’t remember exactly what we did, but if we were writing this today; that is where I’d probably start. Plenty of discussion about how accurate/useful those rankings are, but in this instance, it serves as a good starting point

[c]If safety is not part of your mission statement or part of the your graduate student handbook, then this could cause issues with any disciplinary actions you may want to take. For instance, we had a graduate student set off the fire alarm twice on purpose in a research intense building. It was difficult for the department this person was part for actions to be taken. 

We have a separate section on safety in our handbook “Chemical engineering research often involves handling and disposing of hazardous materials. Graduate

students must follow safe laboratory practices as well as attend a basic safety training seminar before starting

any laboratory work. In order to promote a culture of safety, the department maintains an active Laboratory

Safety Committee composed of the department head, faculty, staff and a student members which meets each

semester. Students are expected to be responsive to the safety improvements suggested by the committee,

to serve on the committee when asked, and utilize the committee members as a resource for lab safety

communication.”

[d]This is an interesting perspective on how others have prioritized safety.

[e]I find these sorts of things ring hollow given how little PIs or department leadership seem to know about what is happening in other people’s labs.

[f]I agree, particularly at the University level. However, a number of labs have mission statements, including the Miller lab, that mentions safety. I think at that level, it certainly can demonstrate greater intent

[g]Agreed. Having that language come from the PI is definitely different from having it come from the department or university – especially if the PI also walks the walk.

[h]So important because what is important to the professor becomes important to the student

[i]I definitely agree with this.  I have always noticed that our students immediately reflect, pick up on, and look for what they think their professors deem most necessary/important essential.

[j]I think this is an underappreciated area. These are the conversations that help make safety a part of doing work, not just something bolted on to check a box or provide legal cover.

[k]Is this the same as safety moments?

[l]I would say somewhat? I’ve come to realize that these two terms are often used interchangeable, but can mean very different things. At UNC, what my lab called “safety minutes” would be a dedicated section of group meeting every week where someone would lead a hypothetical scenario or a discussion of how to design a dangerous experiment with cradle-to-grave waste planning. At other places; these can mean things as simple as a static slide before seminar.

[m]The inverse of my comment above. I think these have their place, but if they’re disconnected from what the group’s “really” there to talk about, they can reinforce the idea that safety isn’t a core part of research.

[n]Agreed. I’ve seen some groups implement this by essentially swiping “safety minutes” from someone else. While this could be a way to get started, the items addressed really should be specific to your research group and your lab in order to be meaningful.

[o]Note how all these examples are of the department holding its own researchers accountable, not EHS coming externally to enforce

[p]Yes! It doesn’t fight against the autonomy that’s a core value of academia.

[q]This is a good point. Can’t be a one-and-done although it often feels like it is treated that way.

[r]It seems like this practice would also build awareness and appreciation of the other lab settings and help to foster communication between groups.

[s]I would also hope that it would normalize reminding others about their PPE. I was surprised to find how many faculty members in my department were incredibly uncomfortable with correcting the PPE or behavior of a student from a different lab. It meant effectively that we had extremely variable approaches to PPE and safety throughout our department.

[t]LOVE this idea. I’m guessing it makes the PI reflect on safety of each student as well as start a conversation about what’s going well and ways to improve

[u]We’ve seen dramatic improvement in safety issue resolution once we implemented this kind of program.

[v]Note how the word assist is used. Important to emphasize that the PI is delegating some of their duties to the LSO and throughout the lab but they are ultimately responsible for the safety of their researchers.

[w]Really important point. Too often I’ve seen an LSO designated just so the PI can essentially wash their hands of responsibility and just hand everything safety related to the LSO. It is also important for the PI to be prepared to back their LSO if another student doesn’t want to abide by a rule.

[x]Wondering what the risk is of institutions taking advantage of LSO programs by putting tasks on researchers that should really be the responsibility of the facility or EHS

[y]At UMN and UNC, do these tasks/roles contribute towards progress towards degree?

[z]In my experience at UNC serving as an LSO, it does not relate to progressing one’s studies/degree in any way (though there is the time commitment component of the role). At UMN, I know departmentally they have stronger support for their LSOs and requirements but I would not say that serving as an LSO helps/hinders degree progression (outside again of potential time commitments).

[aa]Thanks! I’m glad to hear that it doesn’t seem to hurt, but I think finding ways for it to help could make a huge difference. Thinking back to my own experience, my advisor counseled us to always have that end goal in mind when thinking about how we spent our time. This was in the context of not prioritizing TA duties ahead of research, but it is something that could argue against taking on these sorts of tasks.

[ab]Yeah, I think that is a really important point. If you’re PI continuously stresses only the results of research/imparts a sense of speed > safety; the students will pick up on that and shift in that direction through a function of their lab culture. So the flipside is if you can build and sustain a strong culture of safety; it becomes an inherent requirement, not an external check

[ac]It is important to keep in mind that this work should be considered in relation to other duties and to somehow be equally shared out among lab members. Depending on how this work is distributed, it can become an incredibly time-consuming set of tasks for one person to constantly be handling.

[ad]I have struggled with how to get buy-in for production of written SOPs.

[ae]It also increases the likelihood that the researchers will be able to implement the controls!

[af]Important point. It is often difficult in grad school to admit when you don’t understand or know how to do something. It is critical to make sure that they understand what is expected. I ran a small pilot project in which I found out that all 6 “soon to be defending” folks involved in the pilot had no clue what baffles in a hood were. Our Powerpoint “hoods” training was required every year. Ha!

[ag]In addition, it serves as a review process to catch risks hazards that the first writer may not have thought of. In industry this is a common practice that multiple people must check off on a protocol before it is used.

[ah]As outlined in this section, a good idea.  We’re also working toward development of collaboration between staff with safety functions.  For instance, have building managers from one department involved in inspections of buildings of other departments.

[ai]Also to avoid re-inventing the wheel. If another group has this expertise and has done risk assessments on the procedure you’re doing, better to start there rather than from scratch. You may even identify items for the other group to add.

[aj]Bottom up approach works extremely well when you have departmental support but not so much when the Head of the Dept doesn’t care.

[ak]They also can’t be effective if the concerns that the JST raise aren’t taken seriously by those who can change policies.

[al]An additional advantage is displaying value for performing safety duties. I.e. The culture is developed such that you work is appreciated rather than an annoyance

[am]I’m curious to hear what discoveries have been made about this.

[an]At UConn, we were trying to use surveys to essentially prove to our department leadership and faculty safety committee that graduate students actually DID want safety trainings – we just wanted them to be more specific to the things that we are actually concerned about it lab (as opposed to the same canned ones that they kept offering). My colleagues have told me that they are actually moving forward with these types of trainings now.

[ao]We also started holding quarterly LSO meetings because we proved to faculty through surveys that graduate students actually did want them (as long as they were designed usefully and addressed real issues in the research labs).

[ap]We work with representatives from various campus entities, which brings us a variety of insights.  Yes focused training is much more valuable, and feels more worthwhile, educating both the trainer and trainee.

[aq]This is an impressive way for department administration to show endorsement and support for safety efforts.

[ar]Another way departments can communicate their commitment towards safety.

[as]We have one of these, too, but we need to move away from it. Not augmentation, but replacement. I don’t know what that looks like yet, but a content dump isn’t it.

[at]Agreed. At UNC we actually have an annual requirement to review the laboratory safety manual with our PI in some sort of setting (requires the PI to sign off on some forms saying they did it). Obviously with the length, that isn’t feasible in its entirety; so we’d highlight a few key sections but yeah. Not the most useful document

[au]I see the CHP or lab safety manual as education/resources and the training as actually practicing behaviors that are expected of researchers, which is critical to actually enforcing policies

[av]Agreed. I always felt any “training” should actually be doing something hands-on. Sitting in a lecture hall watching a Powerpoint should not qualify as “training.”

[aw]Agreed as well Jessica.  That is why now all our safety trainings are hands on as you stated.  It has worked and come across MUCH better.  Even with our facilities and security personnel.

[ax]I really like how continued training is embedded throughout regular day-to-day activities in many cases, this is important. I would add that it is important to have the beginning training available for refresher or reference as needed but don’t think it’s worth it to completely retake the online trainings.

[ay]Let me remind everyone that when a senior lab person shows a junior person how to do a procedure, training is occurring. Including safety aspects in the teaching is critical. Capturing this with a note in the junior person’s lab notebook documents it. The UCLA prosecution would not have occurred if the PD had done this with Ms. Sangji.

[az]I’m very curious to hear about examples of this.

[ba]Wow. Getting the PIs to do this would be awesome. I wonder what is the PI incentive. Part of their annual review?

[bb]Agreed, this seems like a big ask

[bc]In recognition of this our department has put together an on-line lab research mentoring guide and we’re looking for ways to disseminate info about it.

[bd]This works both ways; a mentee ending up with a mentor who doesn’t emphasize safety in their work might be communicating that to their mentees as well.

[be]This has been something I’ve been concerned about and am not sure how to address as an embedded safety professional.

[bf]Just a thought – It seems like there is a big overlap between continued training and developing awareness, which makes sense

[bg]In working with graduate students, I have found a really odd understanding of this to be quite common. Many think that they are only responsible for understanding what is going on in their own labs – and not for what may be going on next door.

[bh]So true. This is where EHS could really help departments or buildings define safety better.  Most people may not be aware that the floor above them uses pyrophorics, etc.

[bi]I think this speaks to how insular grad school almost forces you to be. You spend so much time deepening your knowledge and understanding of your area of research that you have no time to develop breadth.

[bj]Yeah, these are great points. Anecdotally, at UNC when we started the JST we really struggled to get any engagement whatsoever out of the computational groups, even when their work space is across the hall from heavily synthetic organic chemistry groups. We didn’t really solve this, but I know it was and is something we’re chewing on

[bk]Not mentioned explicitly in this section, but documenting what is learned is critically important.  As noted earlier in the paper, students cycle through labs.  The knowledge needs to stay there.

[bl]From my perspective, awareness seems to be directly tied t the PIs priorities except for the 1 in 20 student.

[bm]It seems like something like this happened in the 2010 Texas Tech explosion.

[bn]This highlights the importance of developing procedures/protocols/SOPs, secondary review, and good training/onboarding practicing for specific techniques

[bo]These are always great discussions and fruitful.

[bp]Agreed. Even if you never encounter that scenario in your career, the process of how to think about responding to the unexpected is a generalizable skill.

[bq]I also think it is important to use something like this to help researchers think about how to respond to incidents when they do happen in order to decrease the harm caused by the incident.

[br]This is really great. I think a big part of knowing what to do when a lab incident occurs has a lot to do with thinking about how to respond to the incident before it happens.

[bs]I’m really glad this is included in here. Most of risk assessment is actually very intuitive but this highlights the importance of going through the process in a formal way. But the term is so unfamiliar to researchers sometimes that it seems unapproachable

[bt]I’m interested in learning how others judge the way to find this balance.

[bu]These are useful if the student doing the work develops the checklist otherwise it becomes just a checklist without understanding and thought.  I see many students look at these checklist and ignore hazards because it is not on or part of the list.

[bv]Good point. It would likely be a good practice to periodically update these as well – especially encouraging folks to bring in things that they’ve come across that were done poorly or they had to clean up.

[bw]These are great points. The checklists we’ve designed try their best to highlight major hazards, but due to brevity it isn’t possible to cover everything. I think as Jessica pointed out, is that if they are reviewed periodically, that can be a huge boost in a way that reviewing and updating SOPs as living documents is also important

[bx]This is important – a good checklist is neither an SOP nor a training.

[by]I utilize checklists but sometimes see a form of checklist fatigue – a repeated user thinks they know it and doesn’t bother with the checklist.

So the comment about a GOOD checklist is applicable.

[bz]I’m impressed with the ideas and diversity and discussion of alternatives.  It’s inspiring.  However, I’m trying to institute a culture of safety where I am and many of these ideas aren’t possible for me.  I’m in chemistry at a 2-year (community) college, and I don’t have TAs, graduate students, etc.  We’re not a research institution which is somewhat of an advantage because our situations are relatively static and theoretically controllable .  My other problem is I’m trying to carry the safety culture across the college and to our sister colleges, to departments like maintenance and operations, art, aircraft mechanics, welding etc.

I would love to see ways to address 

1. just a teaching college

2. other processes across campus.

I head a safety committee but am challenged to keep people engaged and aware.

[ca]I’ve found some helpful insights from others about this sort of thing from NAOSMM. They have a listserv and annual conferences where they offer workshops and presentations on safety helpful for non-research institutions like to what you’re describing.

CHAS presentations from the Spring 2022 national meeting

Below are PDF versions of presentations from CHAS symposia and those in other divisions from the Spring, 2022 meeting.

Value of storytelling to build empathy, awareness, and inclusivity in EHS, Dr. Kali Miller

Inclusive risk assessment: Why and how? Ralph Stuart, CIH, CCHO

Some thoughts about how to safely accommodate people with disabilities in the laboratory, Debbie Decker, CCHO

Job design for the “hidden” disabled professional, Dr. Daniel R. Kuespert, CSP

Discussion of accommodation and advocacy for graduate student researchers, Catherine Wilhelm

Parsing Chemical Safety Information Sources, Ralph Stuart, CIH, CCHO

SDS’s: What are They Good For?

CHAS Chat October 28, 2021

Chemical safety and information technology have both evolved significantly since OSHA established Material Safety Data Sheets as the basic regulatory unit of chemical safety information in the 1980’s. This evolution has both advantages and challenges for lab workers. This session will discuss both sides of this coin and best practices for using SDS’s as chemical safety information resource in the laboratory setting.

Join us from 1 to 3 PM on Thursday, October 28 to hear from chemical safety experts discuss the uses and challenges of safety data sheets as a source of laboratory chemical safety information. Our presenters will be Dr. Dan Kuespert of Johns Hopkins University and Dr. Rob Toreki of ilpi.com

If you are interested in attending this session, give us your e-mail address here, and we will provide a Zoom connection link the week of the CHAS chat

Thanks for your interest in Chemical Health and Safety!

The Art & State of Safety Journal Club: “Mental models in warnings message design: A review and two case studies”

Sept 22, 2021 Table Read

The full paper can be found here: https://www.sciencedirect.com/science/article/abs/pii/S0925753513001598?via%3Dihub

Two case studies in consumer risk perception and exposure assessment, focusing on mothballs and elemental mercury.

For this Table Read, we will only be reviewing the two case studies presented in the paper.

4. Two case studies: mothballs and mercury

Two case studies illustrate the importance of careful adaptation to context[a][b][c]. In the first case, an expert model of consumer-product use of paradichlorobenzene mothballs is enhanced with information from lay users’ mental models, so the model can become more behaviorally realistic (Riley et al., 2006a). In the second case, the mental models elicitation is enhanced with ethnographic methods including participant observation in order to gain critical information about cultural context of mercury use in Latino and Caribbean communities in the New York area (Newby et al., 2006; Riley et al., 2001a, 2001b, 2006b).

Both cases are drawn from chemical consumer products applied in residential uses. The chemicals considered here – paradichlorobenzene and mercury – have a wide variety of consumer and occupational uses that underscore the importance of considering context in order to attain a realistic sense of beliefs about the chemical, exposure behaviors, and resultant risk.

This analysis focuses on what these case studies can tell us about the process of risk communication design[d] in order to take account of the multidimensional aspects of risk perception as well as the overall cultural context of risk. Thus, risk communications may be tailored to the beliefs held by individuals in a specific setting, as well as to the specifics of their situation (factors physical, social, and cultural) which influence perceptions of and decision making about risk.

[e][f][g][h]

4.1. Mothballs

Mothballs are used in homes to control moth infestations in clothing or other textiles. Mothballs are solids (paradichlorobenzene or naphthalene) that sublimate (move from a solid state to a gaseous state) at room temperature. Many are in the shape of balls about 1 in. in diameter, but they are also available as larger cakes or as flakes. The products with the highest exposed surface area (flakes) volatilize more quickly. The product works by the vapor killing adult moths, breaking the insect life cycle.

The primary exposure pathway is inhalation of product vapors, but dermal contact and ingestion may also occur. Cases of ingestion have included children mistaking mothballs for candy and individuals with psychological disorders who compulsively eat household items (Avila et al., 2006; Bates, 2002). Acute exposure to paradichlorobenzene can cause skin, eye, or nasal tissue irritation; acute exposure to naphthalene can cause hemolytic anemia, as well as neurological effects. Chronic exposures to either compound causes liver damage and central nervous system effects. Additional long-term effects of naphthalene exposure include retinal damage and cataracts (USEPA, 2000). Both paradichlorobenzene and naphthalene are classified as possible human carcinogens (IARC Group II B) (IARC, 1999). Since this classification in 1987, however, a mechanism for cancer development has been identified for both naphthalene and paradichlorobenzene, in which the chemicals block enzymes that are key to the process of apoptosis, the natural die-off of cells. Without apoptosis, tumors may form as cell growth continues unchecked (Kokel et al., 2006).

Indoor air quality researchers have studied mothballs through modeling and experiment (e.g., Chang and Krebs, 1992; Sparks et al., 1991, 1996; Tichenor et al., 1991; Wallace, 1991). Research on this topic has focused on developing and validating models of fate and transport of paradichlorobenzene or naphthalene in indoor air. Unfortunately, the effects of consumer behavior on exposure were not considered[i][j]. Due to the importance of the influence of consumer behavior on exposure, it is worth revisiting this work to incorporate realistic approximations of consumer behavior.

Understanding consumer decisions about purchasing, storage, and use is critical for arriving at realistic exposure estimates as well as effective risk management strategies and warnings content. Consumer decision-making is further based upon existing knowledge and understanding of exposure pathways, mental models of how risk arises (Morgan et al., 2001), and beliefs about the effectiveness of various risk-mitigation strategies. Riley et al. (2001a, 2001b) previously proposed a model of behaviorally realistic exposure assessment for chemical consumer products, in which exposure endpoints are modeled in order to estimate the relative effectiveness of different risk mitigation strategies, and by extension, to evaluate warnings (refer to Fig. 1). The goal is to develop warnings that provide readers with the information they need to manage the risks associated with a given product, including how hazards may arise, potential effects, and risk-mitigation strategies.

4.1.1. Methods

The idea behind behaviorally realistic exposure assessment is to consider both the behavioral and physical determinants of exposure in an integrated way (Riley et al., 2000). Thus, user interviews and/or observational studies are combined with modeling and/or experimental studies to quantitatively assess the relative importance of different risk mitigation strategies and to prioritize content for the design of warnings, based on what users already know about a product. Open-ended interviews elicit people’s beliefs about the product, how it works, how hazards arise, and how they may be prevented or mitigated. User-supplied information is used as input to the modeling or experimental design in order to reflect how people really interact with a given product. Modeling can be used to estimate user exposure or to understand the range of possible exposures that can result from different combinations of warning designs and reading strategies.

Riley et al. (2006a) recruited 22 adult volunteers [k][l][m][n][o][p][q][r]who had used mothballs from the business district in Northampton, Massachusetts. Interview questions probed five areas: motivation for product use and selection; detailed use data (location, time activity patterns, amount and frequency of use); mental models of how the product works and how hazards may arise; and risk perceptions; risk mitigation strategies. Responses were analyzed using categorical coding (Weisberg et al., 1996). A consumer exposure model utilized user-supplied data to determine the concentration of paradichlorobenzene in a two-box model (a room or compartment in which moth products are used, and a larger living space).

4.1.2. Uses

Table 1 illustrates the diversity of behavior surrounding the use[s][t][u][v][w] of mothballs in the home. It is clear that many users behave differently around the product from what one might assume from reading directions or warnings on the package label.

65% of participants reported using mothballs to kill or repel moths, which is its intended use. 35% reported other uses for the product, including as an air freshener and to repel rodents outdoors. Such uses imply different use behaviors related to the amount of product used and the location where it is applied. Effective use of paradichlorobenzene as an indoor insecticide requires use in an enclosed space, the more airtight the better. Ventilation is not recommended, and individuals should limit their exposure to the non-ventilated space. In contrast, use as a deodorizer disperses paradichlorobenzene throughout a space by design.

These different behaviors imply different resultant exposure levels. For use as an air freshener, the exposure might be higher due to using the product in the open in one’s living space. Exposures might also be lower, as in the reported outdoor use for controlling mammal pests.

A use not reported in this study, perhaps due to the small sample size, or perhaps due to the stigma associated with drug use, is the practice of huffing or sniffing – intentional inhalation in order to take advantage of the physiological effects of volatile chemicals (Weintraub et al., 2000). This use is worth mentioning due to its high potential for injury, even if this use is far less likely than other uses reported here.

The majority of users place mothballs outside of sealed containers in order to control moths, another use that is not recommended by experts or on package labeling[x][y][z][aa][ab][ac][ad][ae]. Even though the product is recommended for active infestations, many users report using the product preventively, increasing the frequency of use and resultant exposure above recommended or expected levels. Finally, the amount used is greater than indicated for a majority of the treatment scenarios reported. These variances from recommended use scenarios underscore the need for effective risk communication, and suggest priority areas for reducing risk.

These results indicate a wide range of residential uses with a variety of exposure patterns. In occupational settings, one might anticipate a similarly broad range of uses. In addition to industrial and commercial uses as mothballs (e.g., textile storage, dry cleaning) and air fresheners (e.g., taxi cabs, restaurants), paradichlorobenzene is used as an insecticide (ants, fruit borers) or fungicide (mold and mildew), as a reagent for manufacturing other chemical products, plastics and pharmaceuticals, and in dyeing (GRR Exports, 2006).

4.1.3. Exposures

Modeling of home uses illustrates the range of possible exposures[af] based on self-reported behavior, and compares a high and low case scenario from the self-reports to an ‘‘intended use’’ scenario that follows label instructions exactly.

Table 2 shows the inputs used for modeling and resultant exposures. The label employed for the expected use scenario advised that one box (10 oz, 65 mothballs) should be used for every 50 cubic feet (1.4 cubic meters) of tightly enclosed space. Thus, for a 2-cubic-meter closet, 90 mothballs were assumed for the intended use scenario. The low exposure scenario involved a participant self-report in which 10 mothballs were placed in a closed dresser drawer, and the high exposure scenario involved two boxes of mothballs reportedly placed in the corners of a 30-cubic-meter bedroom.

Results show that placing moth products in a tightly enclosed space significantly reduces the concentration in users’ living space.[ag][ah][ai][aj][ak][al][am][an] The high level of exposure resulting from the usage scenario with a large amount of mothballs placed directly in the living space coincided with reports from the user of a noticeable odor and adverse health effects that the user attributed to mothball use.

4.1.4. Risk perception

There were a wide range of beliefs about the function and hazards[ao][ap] of [aq][ar][as][at][au][av][aw]mothballs among participants, as well as a gap in knowledge between consumer and expert ideas of how the product works. Only 14% of the participants were able to correctly identify an active ingredient in mothballs, while 76% stated that they did not know the ingredients. Similarly, 68% could not correctly describe how moth products work, with 54% of all participants believing that moths are repelled by the unpleasant odor. Two-thirds of participants expressed health concerns related to using moth products[ax][ay]. 43% mentioned inhalation, 38% mentioned poisoning by ingestion, 21% mentioned cancer, and 19% mentioned dermal exposure. A few participants held beliefs that were completely divergent from expert models, for example a belief that mothballs ‘‘cause parasites’’ or ‘‘recrystallize in your lungs.’’

A particular concern arises from the common belief that moths are repelled by the smell of mothballs. This may well mean that users would want to be able to smell the product to know it is working – when in fact this would be an indication that users themselves were being exposed and possibly using the product incorrectly. Improvements to mothball warnings might seek to address this misconception of how mothballs work, and emphasize the importance of closed containers, concentrating the product near the treated materials and away from people.

4.2. Mercury as a consumer product

Elemental mercury is used in numerous consumer products, where it is typically encapsulated, causing injury only when a product breaks. Examples include thermometers, thermostats, and items containing mercury switches such as irons or sneakers with flashing lights. The primary hazard arises from the fact that mercury volatilizes at room temperature. Because of its tendency to adsorb onto room surfaces, it has long residence times in buildings compared with volatile organic compounds. Inhaled mercury vapor is readily taken up by the body; in the short term it can cause acute effects on the lungs, ranging from cough and chest pain to pulmonary edema and pneumonitis in severe cases. Long-term exposure can cause neurological symptoms including tremors, polyneuropathy, and deterioration of cognitive function (ATSDR, 1999).

The second case study focuses on specific uses of elemental mercury as a consumer product among members of Latino and Caribbean communities in the United States. Mercury is sold as a consumer product in botánicas (herbal pharmacies and spiritual supply stores), for a range of uses that are characterized variously as folkloric, spiritual or religious in nature.

4.2.1. Methods

Newby et al. (2006) conducted participant observation and interviews with 22 practitioners and shop owners[az], seeking to characterize both practices that involved mercury use and perceptions of resulting risks. These practices were compared and contrasted with uses reported in the literature as generally attributable to Latino and Caribbean religious and cultural traditions in order to distinguish between uses that are part of the Santeria religion, and other uses that are part of other religious practice or secular in nature. Special attention was paid to the context of Santeria, especially insider–outsider dynamics created by its secrecy, grounded in its histories of suppression by dominant cultures. Because the label Latino is applied to a broad diversity of ethnicities, races, and nationalities, the authors sought to attend to these differences as they apply to beliefs and practices related to mercury.

Uses reported in the literature and reported by participants to Newby et al. (2006) and Riley et al. (2001a, 2001b) were modeled to estimate resulting exposures. The fate and transport of mercury in indoor air is difficult to characterize because of its tendency to adsorb onto surfaces and the importance of droplet-size distributions on overall volatilization rates (Riley et al., 2006b). Nevertheless, simple mass transfer and indoor air quality models can be employed to illustrate the relative importance of different behaviors in determining exposure levels.

4.2.2. Uses

Many uses are enclosed, such as placing mercury in an amulet, gourd, walnut, or cement figure (Johnson, 1999; Riley et al., 2001a, 2001b, 2006b; Zayas and Ozuah, 1996). Other uses are more likely to elevate levels of mercury in indoor air to hazardous levels, including sprinkling of mercury indoors or in cars for good luck or protection, or adding mercury to cleaning compounds or cosmetic products (Johnson, 1999; Zayas and Ozuah, 1996).

Some uses, particularly those attributable to Santeria, are occupational in nature. Santeros and babalaos (priests and high priests) described being paid to prepare certain items that use mercury (Newby et al., 2006). Similarly, botanica personnel described selling mercury as well as creating certain preparations with it (Newby et al., 2006; Riley et al., 2001a, 2001b). One case report described exposure from a santero spilling mercury (Forman et al., 2000). Some of this work occurs in the home, making it both occupational and residential.

Across the U.S. population, including in Latino and Caribbean populations, it is more common for individuals to be exposed to elemental mercury vapor through accidental exposures such as thermometer, thermostat and other product breakage or spills from mercury found in schools and abandoned waste sites (Zeitz et al., 2002). The cultural and religious uses described above reflect key differences in use (including intentional vs. accidental exposure) that require attention in design of risk communications.

4.2.3. Exposures

Riley et al. (2001a, 2001b) solved a single-chamber indoor-air quality model analytically to estimate exposures based on scenarios derived from two interviews with mercury users. Riley et al. (2001a, 2001b) similarly modeled scenarios for sprinkling activities reported elsewhere in the literature. Riley et al. (2001a, 2001b) additionally employed mass transfer modeling combined with indoor air quality modeling to estimate resulting exposures from the contained uses described in interviews with practitioners (Newby et al., 2006).

Results presented in Table 3 show wide variation in predicted exposures resulting from different behavior patterns in different settings. Contained uses produce the lowest exposures. As long as the mercury remains encapsulated or submerged in other media, it poses little risk. By contrast, uses in open air can result in exposures orders of magnitude greater, depending on amounts and how the mercury is distributed, as droplet size and surface area are key determinants of exposure.

4.2.4. Risk perception

Newby et al. (2006) found that participants identified the risks of mercury use as primarily legal in nature.[ba][bb][bc][bd][be][bf] Concerns about getting caught by either police or health officials were strong[bg][bh][bi]. After these concerns, practitioners mentioned the risks of mercury use ‘‘backfiring’’ on a spiritual level, particularly if too much is used.[bj][bk][bl] There was some awareness of potential harmful health effects from mercury use[bm][bn], but the perceptions of mercury’s spiritual power and the perceived legal risks of possession and sale figured more prominently in users’ rationales for taking care in using it and clearly affected risk-mitigation strategies described (e.g., not discussing use or sales openly, giving people a bargain so they won’t tell authorities).

Newby et al. (2006) discuss at length the insider–outsider dynamics in the study, and their influence on the strength of fears of illegality of mercury. Because of taboos on sharing details of Santeria practice, the authors warn against providing certain details of practice in risk communications designed by outsiders, as it would undercut the credibility of the warning messages.

Mental models of risk perception are critically important in all cases of consumer mercury use, both intentional and unintentional. When a thermostat or thermometer breaks in a home, many users will use a vacuum to clean up the spil[bo][bp][bq][br]l, based on a mental model of mercury’s hazards that does not include a notion of mercury as volatile. A key gap in people’s knowledge of mercury relates to its volatility; most lay people do not realize that vacuuming mercury will greatly increase its indoor air concentration, causing a greater health hazard than simply leaving mercury on the floor (Schwartz et al., 1992; Zelman et al., 1991). Thus, many existing risk communications about mercury focus on accidental spills and how (or how not) to clean them up.[bs][bt]


[a]Interesting timing for me on this paper- we’re currently working on a scheme to communicate hazards to staff & faculty at a new facility.  We have an ethnic diversity to consider and a number of the spaces will host the general public for special events.  Lots of perspectives to account for…

[b]If you have info on this next week, it would be interesting to hear what challenges you have run into and what you have done to address them.

[c]I’d be game for that.  I’m just getting into the project and was starting to consider different risk perceptions among different audiences.  This paper has given me some food for thought

[d]This is different from the way I have used the term “risk communication” traditionally. Traditionally risk communication is designed to help a variety of stakeholders work through scientific information to come to a shared decision about risk. See https://www.epa.gov/risk-communication for example. However, this paper’s approach soundsm more like the public health approach used to collect more accurate information about a risk

[e]I really like the concept of “behaviorally realistic exposure assessment”. Interestingly, EPA has taken over regulation of workplace chemicals from OSHA because OSHA was legally constrained from using realistic exposure assessment (specifically, the assumption that PPE may not be work correctly all the time)

[f]Wow – that is crazy to hear that OSHA would be limited in that way. One would thing actual use would be an incredibly important thing to consider.

[g]OSHA is expected to assume that all of its regulations will be followed as part of its risk assessment. EPA doesn’t believe that. This impacted EPA’s TSCA risk assessment of Methylene Chloride

[h]There is a press story about this at

https://www.cbsnews.com/video/family-of-man-who-died-after-methylene-chloride-exposure-call-epa-decision-step-in-the-right-direction/

[i]I’m wondering if the researchers are in academia or from the company. If from companies which supplied mothballs, I’m surprised that this was not one of the first things that they considered.

[j]That’s an interesting question. Mothballs are a product with a long history and they were well dispersed in the economy before regulatory concerns about them arose. So the vendors probably had an established product line before the regulations arose.

[k]Wondering about the age distribution of the study group- when I think of mothballs, I think of my grandparents who would be about 100 years old now.  Maybe younger people would handle the mothballs differently since they are likely to be unfamiliar with them.

[l]I’m also wondering about how they recruited these volunteers because that could introduce bias, for example only people who already know what they are might be interested

[m]Volunteer recruitment is an interesting thought…what avenue did they use to recruit persons who had this product? Currently wondering who still uses them since I don’t know anyone personally who talks about it…

[n]It sounds like they went into the shopping area outside Smith College and recruited people off the street. Northampton is a diverse social environment, but I suspect mothball users are from a particular segment of society

[o]How the recruitment happened seems like a key method that wasn’t discussed sufficiently here. After re-reading this it might be people that they recruited people without knowing if they had used mothballs or not.

[p]Interesting thought. When I was in my undergraduate studies, one of my professors characterized a substance as “smelling like mothballs,” and me and all of my peers were like “What? What do mothballs smell like…?” Curious as to whether product risk assessment is different between these generational groups.

[q]Did you and your undergraduate peers go grab a box and sniff them to grok the reference?

[r]I certainly did not! But I wonder how many people would have, if there were available at the time!

[s]Would anyone like to share equivalents they have seen in research labs? Researchers using a product in a way different from intended? Did it cause any safety issues? Were the researchers surprised to find that they were not using as intended? Were the researchers wrong in their interpretations and safety assessment? If so, how?

[t]I presume you’re thinking of something with a specific vendor-defined use as opposed to a reagent situation where, for example, a change in the acid use to nitric led to unforeseen consequences.

[u]I agree that this can apply to the use of chemicals in research labs. Human error is why we want to build in multiple controls. In terms of examples, using certain gloves of PPE for improper uses is the first thing that comes to mind.

[v]I have seen hardware store products repurposed in lab settings with unfortunate results, but I can’t recall specific of these events off the top of my head. (One was an hubcap cleaning solution with HF in it used in the History Dept to restore granite architectural features.)

[w]I have seen antifreeze brought in for Chemistry labs and rock salt brought in for freezing point depression labs…not dangerous, but not what they were intended for.

[x]So is the take-away on this point and the ones that follow in the paragraph that another communication method is needed?  Reading the manual before use is rare (in my experience)- too wordy.  Maybe pictographs or some sort of icon-based method of communications.

[y]This seems like to takeaway to me! Pictures, videos—anything that makes the barrier to content engagement as low as possible. Even making sure that it is more difficult to miss the information when trying to use the product would likely help (ie, not having to look it up in a manual, not having to read long paragraphs, not having to keep another piece of paper around)

[z]In the complete article, they discuss three hurdles to risk understanding:

1. Cognitive heuristics

2. Information overload

3. Believability and self-efficacy

These all sound familiar from the research setting when discussing risks

[aa]Curious how many people actually read package labeling, and of those people how many take the labeling as best-practice and how many take it as suggested use. I’m also curious how an analogy to this behavior might be made in research settings. It seems to me that there would likely be a parallel.

[ab]I believe that the Consumer Product Safety Commission does research into this question

[ac]Other considerations: is the package labeling comprehensible for people (appropriate language)? If stuff is written really small, how many people actually take the time to read it? Would these sorts of instructions benefit more from pictures rather than words?

[ad]I was watching an satirical Better Call Saul “legal ethics” video yesterday where the instructor said “it doesn’t matter how small the writing is, you just have to have it there”. See https://www.dailymotion.com/video/x7s7223 for that specific “lesson”

[ae]I think we’d see a parallel in cleaning practices, especially if it’s a product that gets diluted different amounts for different tasks. Our undergraduate students for example think all soap is the same and use straight microwash if they see it out instead of diluting.

[af]Notably, even when putting them outside in a wide area, you can still smell them from a distance, which would make them a higher exposure than expected.  Pictures and larger writing on the boxes would definitely help, but general awareness may need to be shared another way.

[ag]Historical use was in drawers with sweaters, linens, etc (which is shown to be the “low exposure”)…were these products inadvertently found to be useful in other residential uses much later?

[ah]I wonder if the “other uses” were things consumers figured out and shared with their networks – but those uses would actually increase exposure.

[ai]It appears so!  Another issue may be the amount of the product used.  Using them outside rather than in a drawer, may minimize the exposure some, but that would be relative to exactly how much of the product was used…

[aj]The comment about being able to smell it to “know it is working” is also interesting. It makes me think of how certain smells (lemon scent) are associated with “cleanliness” even if it has nothing to do with the cleanliness.

[ak]I’ve also heard people refer to the smell of bleach as the smell of clean – although if you can smell it, it means you are being exposed to it!

[al]This is making me second guess every cleaning product I use!

[am]It also makes me wonder if added scent has been used to discourage people from overusing a product.

[an]I think that is why some people tout vinegar as the only cleaner you will ever need!

[ao]What do you think would lead to this wide range?

[ap]If they are considering beliefs that were passed down through parents and grandparents this would also correlate with consumers not giving attention to the packaging because they grew up with a certain set of beliefs and knowledge and they have never thought to question it.

[aq]Is it strange to hear this given that the use and directions are explained right on the packaging?

[ar]I don’t think it is that strange. I think a lot of people don’t bother to read instructions or labels closely, especially for a product that they feel they are already familiar with (grow up with it being used)

[as]Ah, per my earlier comment regarding whether or not people read the packaging—I am not actually very surprised by this. I think there is somewhat of an implicit sense that products made easily available are fairly safe for use. That, coupled with a human tendency to acclimate to unknown situations after no obvious negative consequences plus the shear volume of text meant to protect corporations (re: Terms of Use, etc), I think people sort of ignore these things in their day-to-day.

[at]I agree it seems that people use products they saw used throughout their childhood…believed them to be effective and hence don’t read the packaging.  (Clearly going home to read the packaging myself…as I used them recently to repel skunks from my yard).

[au]Since the effects of exposure to mothball active ingredients are not acute in all but the most extreme cases (like ingestion), it is unlikely that any ill health effects would even be linked to mothballs

[av]I have wondered if a similar pattern happens with researchers at early stages. If the researcher is interested to a reagent or a process by someone who doesn’t emphasize safety considerations, that early researcher things of it as relatively safe – then doesn’t do the risk assessment on their own.

[aw]Yes, exactly. Long-term consequences are much harder for us to grapple with than acute consequences, which may lead to overconfidence and overexposure

[ax]I wonder why with so many having health concerns, only 12% used on the correct “as needed” basis.

[ay]A very, very interesting question. I wonder if it has something to do with a sense that “we just don’t know” along with a need to find a solution to an acute problem. i.e., maybe people are worried about whether or not it is safe in a broad, undefined, and somewhat intractable manner, but are also looking to a quick solution to a problem they are currently facing, and perhaps ignore a pestering doubt

[az]Again here, I’m wondering why more is not described about how they identified participants, because it is a small sample size and there is a possibility for bias

[ba]This is an important finding. Public risk perception and professional risk perception can be quite different. I don’t think regulators consider how they might contribute to this gap because each chemical is regulated in isolation from other risks and exposures.

[bb]It is also related to the idea of how researchers view EHS inspections. Do they see them as opportunities for how they can make their research work safer? Or do they merely see them as annoying exercises that might get them “in trouble” somehow?

[bc]I think that in both Hg case and the research case, there is a power struggle expressed as a culture clash issue. Both the users of Hg for spiritual purposes and researchers are likely to feel misunderstood by mainstream society represented by the external oversight process

[bd]I think this is *such* an important takeaway. The sense as to whether long documents (terms of use and other contracts, etc) and regulatory bodies (EHS etc) are meant to protect the *people/consumers* or whether they are meant to protect the *corporation* I think is a big deal in our society. Contracts, usage information, etc abound, but it’s often viewed (and used) as a means to protect from liability, not as a means to protect from harm. I think people pick up on that.

[be]I am in total agreement – recently I sat through a legal deposition for occupational exposure related mesothelioma, it was unsettling how each representative from each company pushed the blame off in every other possible direction, including the defendant. There are way more legal protections in place for companies than I could have ever imagined.

[bf]There is some discussion of trying to address this problem with software user’s agreements, but I haven’t heard of this concern on the chemical use front.

[bg]This is to say there is a disconnect to reasoning behind the legal implications? Assuming most are not aware of the purpose of the regulations as protections for people?

[bh]I don’t know of any agency that would recognize use of Hg as a spiritual practice. Some Native Americans have found their spiritual practices outlawed because their use of a material is different scenario from the risk scenario that the regulators base their rules on

[bi]I agree with your comment about a disconnect. Perhaps if they understood more about the reasons for the laws they would be more worried about their health rather than getting in trouble.

[bj]To a practitioner, is a spiritual “backfire” completely different from a health effect, or just a different explanation of the same outcome?

[bk]Good question

[bl]Good point – I thought about this too. I’d love to hear more about what the “spiritual backfire” actually looked like. Makes me think of the movie “The Exorcism of Emily Rose” where they showed her story from the perspective of someone who thinks she is possessed by demons versus someone who thinks she is mentally ill.

[bm]I am curious to find out how risk communication plays a role here cause it seems those using the mercury know about its potential health hazard.

[bn]Agree – It does say “some” awareness so I would be interested to see how bad they think it is for health vs reality. It looks like they are doing a risk analysis of sorts and are thinking the benefits outweigh the risks.

[bo]I’m not sure how to articulate it, but this is very different than the spiritual use of mercury.  Spiritual users can understand the danger of mercury exposure but feel the results will be worth it.  The person wielding a vacuum does not understand how Hg’s hazard is increased through volatilization.  I suspect a label on vacuum cleaners that said ‘NOT FOR MERCURY CLEANUP’ would be fairly effective.

[bp]Would vacuum companies see this as worth doing today? I don’t think I really encountered mercury until I was working in labs – it is much less prevalent today than it used to be (especially in homes), so I wonder if they would not see it as worth it by the numbers.

[bq]Once you list one warning like this, vacuum companies might need to list out all sorts of other hazards that the vacuum is not appropriate for cleanup

[br]Also, Mercury is being phased out in homes but you still see it around sometimes in thermometers especially. Keep in mind this paper is from 2014.

[bs]I don’t understand this statement in the context of the paragraph. Which risk communication messages is she referring to? I know that institutional response to Hg spills has changed a lot over the last 30 years. There are hazmat emergency responses to them in schools and hospitals monthly

[bt]I think this vacuum example is just showing how there is a gap in the risk communications to the public (not practitioners), since they mainly focused on clean up rather than misuse. It would be nice if there was a reference or supporting info here. They may have looked at packaging from different mercury suppliers.

CHAS Workshop: Empowering academic researchers to strengthen safety culture, October 17 2021

This 4-hour workshop is primarily directed at frontline researchers in academic institutions: graduate students, postdoctoral scholars, and undergraduate students. Faculty and safety staff are also very much encouraged to participate.

Workshop goals are to:

  • Educate participants about the value of risk assessment
  • Guide participants towards gaining awareness of safety culture messages from the leadership at their institutions
  • Empower participants to expand their safety networks and develop laboratory safety teams.

The next workshop is scheduled for Sunday, October 17, 2021 from 2:00 PM – 6:00 PM Eastern Time. The workshop is $25 per participant. To register for this workshop date, please follow this link to our Eventbrite registration page. If you have any questions about the workshop, please email lstworkshop@dchas.org. 

For more information:

To see our Zotero list of Lab Safety Team resources. visit this page.

For information about the history of the workshop, visit this page.

Constructing Consequences for non-compliance

04/21 Table Read for The Art & State of Safety Journal Club

Excerpts from “Constructing Consequences for Noncompliance: The Case of Academic Laboratories” presented by Dr. Ruthanne Huising, Emlyon Business School

Full paper can be found here: https://journals.sagepub.com/doi/full/10.1177/0002716213492633

Introduction

As a profession, contemporary scientists enjoy an unusual degree of autonomy and deference. Universities are professional-bureaucracies (Mintzberg 1979). One side of the organization is collegial, collectively governed, participatory, consensual, and democratic. The other side is a Weberian, hierarchical, top-down bureaucracy with descending lines of authority and increasing specialization. These organizational structures may allow for differential interpretations of and responses to legal mandates and differential experiences of regulation and self governance. They often disadvantage regulators and administrative support staff, who occupy lower-status positions with less prestige, in their efforts to monitor, manage, and constrain laboratory hazards (Gray and Silbey 2011). What is regarded as academic freedom by the faculty and university administration looks like mismanagement, if not anarchy, to regulators[a][b].Herein lies the gravamen of the risk management problem: the challenge of balancing academic freedom and scientific autonomy with the demand for responsibility and accountability[c][d][e][f][g][h].

We…describe the efforts of one university, Eastern University, to create a system for managing laboratory health, safety, and environmental hazards and to transform established notions that =faculty have little obligation to be aware of administrative and legal procedures.[i][j][k] We describe the setting—Eastern University, an Environmental Protection Agency (EPA) inspection, and a negotiated agreement to design a system for managing laboratory hazards—and our research methods.

We describe efforts, through the design of the management system, to create prescribed consequences for noncompliant practices in laboratories. We show that in an effort to design a management system that communicates regulatory standards, seeks compliance with the requirements[l], and then attempts to respond and correct noncompliant action, Eastern University struggled to balance case-by-case discretion consistent with academic freedom and scientific creativity with the demands for consistent conformity, transparency, and accountability for safe laboratory practices.

Constructing Organizational Consequences at Eastern University: Management System as Solution?

During a routine inspection of Eastern University, a private research university in the eastern United States, federal EPA agents recorded more than three thousand violations of RCRA, CAA, CWA, and their implementing regulations. Despite the large number of discrete violations, both the EPA and the university regarded all but one as minor infractions. The university’s major failure, according to the EPA, was its lack of uniform practices across departments and laboratories on campus.[m][n][o][p] There was no clear, hierarchical organizational infrastructure for compliance with environmental laws, no clear delineation of roles and responsibilities, and, most importantly, no obvious modes of accountability for compliance….Without admitting any violation of law or any liability, the university agreed in a negotiated consent decree to settle the matter without a trial on any issues of fact or law.

At Eastern, the management system reconfigured the work of staff and researchers by moving compliance responsibility away from centralized specialists to researchers working at the laboratory bench. Scientists became responsible for ensuring that their daily research practices complied with city, state, and federal regulations. [q][r]This shift in responsibility was to be facilitated by the creation of operating manuals, inspection checklists, enhanced training, and new administrative support roles.[s][t][u][v][w][x][y][z][aa][ab][ac][ad][ae]

Research Methods: Observing the Design of an Environmental, Health, and Safety (EHS)  Management System

From 2001 through 2007, we conducted ethnographic fieldwork at Eastern University to  investigate what happens when compliance with legal regulations is pursued through a management system.

The fieldwork included observation, interviewing, and document collection. It was supplemented by data collection with standardized instruments for some observations and via several surveys of lab personnel and environmental management staff. For this article, we draw primarily from notes taken at meetings of the committee designing the system, presenting notes from the discussions concerning a catalog of consequences for poor performance required by the consent decree.

Building Responsiveness and Responsibility into an EHS-MS: Consequences for Departures from Specified Operating Procedures

The final version [of the management system manual] was agreed to only after hundreds of hours of negotiations among four basic constituencies: the academic leadership, the university attorney overseeing the consent decree, the environmental health and safety support staff located within the administration, a nonacademic hierarchy, and the lab managers and faculty within the academic hierarchy.[af][ag][ah]

These descriptions explain that each person, or role incumbent, works with a committee of faculty and staff of safety professionals that provides consultation, monitoring, and recommendations, although legal responsibility for compliance is placed entirely within the  academic hierarchy, with ultimate disciplinary responsibility in a university-wide committee.

>What will constitute noncompliance? 

Despite the adoption of the original distinctions between minor, moderate, and very serious incidents [described in a section not included in this Table Read], discussions continued about the relationship between these categories and the actual behavior of the scientists. How would the system’s categories of “acceptable” and “unacceptable” actions map onto normal lab behaviors? How much would the lives of the lab workers be constrained by overly restrictive criteria?[ai][aj][ak] As Professor Doty said, no one wanted the system to be like police surveillance. Labs are places where science students live, after all.[al][am] Once a basic list of unacceptable conditions and actions was created and communicated through safety training, the salient issue would be intentionality, as it is in much conventional legal discourse.

>Who will identify noncompliance?

Marsha (attorney for University): I think we’re going to need to be more specific, though, for university-wide committee policy. If the consequence of a particular action is termination from Eastern, then there’s policy in place for that, but what leads up to that? When do you shut down a lab?[an][ao] When do you require faculty to do inspections in departments like XYZ? A lot of people here have partial responsibility for things—the system may work well, but it’s not[ap] always clear who’s responsible. Where we need to end up is to remember this key link to the PI. In order for this to work, I think it really comes down to the PI accepting responsibility[aq], but how they deal with that locally is a very personal thing[ar][as][at][au]. I don’t think we should prescribe action, tell the PI how to keep untrained people out of [the] lab. But we need to convince the faculty of this responsibility.[av]

>How will those formally responsible in this now clearly delineated line of responsibility be informed? 

Who will tell the professor that his or her lab is dirty or noncompliant?[aw][ax][ay][az][ba][bb][bc][bd]

Informing the responsible scientist turns out to be a complex issue at the very heart of the management system design, especially in the specifications about distribution of roles and responsibilities. In the end, Eastern’s EHS-MS named a hierarchy of responsibility, as described above, from the professor, up through the university academic hierarchy, exempting the professional support staff.[be][bf]

Despite the traceable lines of reporting and responsibility on the organizational charts, consultation, advice, and support was widely dispersed so that the enactment of responsibility and holding those responsible to account were constant challenges and remain so to this day. Most importantly, perhaps, because the faculty hold the highest status and yet hold the lowest level of accessibility and accountability, the committee was vexed as to how to get their attention about different types of violations.

Marsha: …So, while you’re defining responsibilities and consequences, make sure you don’t relieve the PI of his duties. You can assign them helpers, but they need to be responsible[bg][bh][bi]. There can be a difference between who actually does everything and who is responsible[bj]. You need to make sure people are clear about that.

Marsha: We need to convince the faculty of this responsibility….This is what we should be working on this summer. This is unfortunately the labor intensive part—we need to keep “looping back”—going to people’s offices and asking their opinions so they don’t hear things for the first time at [some committee meeting].[bk]

Marsha: We need department heads and the deans to help us with PIs in the coming months…. We need to get PIs—if we don’t get them engaged the system will fail….We will get them by pointing out all the support there is for them, but bottom line is they have to buy into taking responsibility.[bl][bm][bn][bo][bp][bq][br][bs]

In the end, the system built in three formal means to secure the faculty’s attention and acknowledgement of their responsibility for laboratory safety: (1) A registration system was implemented, in which the EHS personnel went from one faculty office to another registering the faculty and his or her lab into the system’s database. The faculty were required to sign a document attesting that they had read the list of their responsibilities and certifying that the information describing the location, hazards, and personnel in their lab was correct for entry into the database. (2) All faculty, as well as students, were required to complete safety training courses. Some are available online, some in regularly scheduled meetings, and others can be arranged for individual research groups in their own lab spaces. The required training modules vary with the hazards and procedures of the different laboratories. (3) Semiannual university inspections and periodic EPA inspections and audits were set up to provide information to faculty, as well as the university administration and staff, about the quality of compliance in the laboratories. Surveys of the faculty, students, and staff, completed during the design process and more recently, repeatedly show that familiarity with the EHS system varies widely.

Although the audit found full compliance in the form of a well-designed system, it also revealed that many of the faculty and some administrators did not have deep knowledge of it,[bt] despite the effort at participatory design.

>What action should be taken? 

Consequences vary with the severity of the incident.

It was essential to the design of the system that there be discretionary responses to minor incidents, which are inevitably a part of science.

It was assumed[bu] that regular interaction with the lab safety representative, discussions in group sessions, and regular visits by the EHS coordinator would identify these and correct them on the spot with discussion and additional direction. The feedback would be routine, semiautomatic in terms of the ongoing relationships between relatively intimate colleagues in the labs and departments. No written documents would even record the transaction unless it was an official inspection; weekly self-inspections by the safety reps were not to be fed into the data system.[bv][bw][bx][by][bz][ca][cb][cc][cd][ce] 

Consequences for moderately serious incidents include one or more of the following actions: oral or written warning(s) consistent with university human resources policies; a peer review of the event with recommendations for corrective action; a written plan by a supervisor [cf]that may include retraining, new protocols, approval from the department EHS committee, and a follow-up plan and inspection; or suspension of activities until the corrective plan is provided, or completed, as appropriate.

A list of eight possible consequence[cg][ch][ci]s accompanies the definition of a very serious incident. The list begins with peer review and a written plan, as in moderately serious incidents, but then includes new items: appearance before the university’s EHS committee or other relevant presidential committees to explain the situation, to present and get approval of a written plan to correct the situation, and to implement the plan; restriction of the involved person’s authority to purchase or use regulated chemical, biological, radioactive, or other materials/equipment; suspension or revocation of the laboratory facility’s authorization to operate; suspension of research and other funds to the laboratory/facility; closure of a lab or facility; and applicable university personnel actions, which may include a written warning, suspension, termination, or other action against the involved person(s) as appropriate.

These descriptions illustrate the sequential escalation of requirements and consequences and display, rather boldly we think, the effort of the committee to draft a legal code for enforcement of the management system’s requirements.

When the committee completed its work, Marsha, the lead attorney, went to work editing it. When it was returned to the committee, the changes, many of which were grammatical rather than substantive, nonetheless so offended the group that participation in the planning process ceased for a long while.[cj][ck][cl] The associate dean communicated to the EHS leadership that morale among the coordinators and other committee members from the laboratories was low and that their willingness to do their best was being compromised. They believed that the decisions they made collectively in the working meetings were being undermined and changed so that at subsequent meetings, documents did not read as they were drafted; they believed that crucial “subtleties, complexities and nuances to policies and proposals” were being ignored, if not actively erased. If they were to continue working together, they asked for complete minutes and officially recorded votes.

Nonetheless, it was the scientists’ and their representatives’ fear that the system would in fact become what a system is designed to be: self-observant and responsive and, thus, would eventually and automatically escalate what were momentary and minor actions into moderate, if not severe, incidents. This anxiety animated the planning committee’s discussions, feeding the desire to insert qualifications and guidelines to create officially sanctioned room for discretionary interpretation.

>Who will be responsible for taking action to correct the noncompliant incident?

Clearly, most minor incidents are to be handled in situ, when observed, through informal conversation, and the noncompliant action is supposed to be corrected by the observer’s instruction and the lab worker’s revised action. Some noncompliance is discovered through inspections that inform the PI of noncompliant incidents; a follow-up inspection confirms that the PI instructed her students to change their ways. Very few incidents actually move up the pyramid of seriousness.

A significant proportion of the chronically reported incidents are associated with the physical facilities and materials in the laboratories[cm], such as broken sashes on the hoods, eye washes not working or absent, missing signage, inadequate tagging on waste, empty first aid kits, or crowding—simply not enough benches or storage areas for the number of people and materials in the lab…Corrections are not always straightforward or easy to achieve.[cn] Tagging of waste, proper signage, and adequate first aid kits may be fixed within a few minutes by ordering new tags and signs from the EHS office and a first aid kit through the standard purchasing process. While the lab may order its own supplies, it must wait for the EHS office to respond with the tags and signs. The hood sashes and eye wash repairs depend on the university facilities office, which is notoriously behind in its work and thus appears unresponsive. In nearly every conversation about how to respond to failed inspections, discussion turned to the problems with facilities (cf. Lyneis 2012[co])…crowding is often the consequence of more research funding than actual space: the scientist hires more students and technicians than there are lab benches. This has been a chronic issue for many universities, with lab construction lagging behind the expansion of research funding over the last 20 years.

Just as the staff experienced the faculty as uninterested in the management system, the scientists experienced a “Don’t bother me” attitude in the staff, because often the ability to take corrective action does not rest entirely with the persons formally responsible for the lab.[cp][cq][cr][cs][ct] The PI depends on the extended network of roles and responsibilities across the university to sustain a compliant laboratory. This gap between agency (the ability to perform the corrective action) and accountability (being held responsible and liable for action) characterizes the scientists’ experience of what they perceive as the staff’s attitude of “Don’t bother me.” The management system is, after all, a set of documents, not a substitute for human behavior.

Discussion and Conclusion

In this article, we have used the case Eastern University to show how coordination and knowledge problems embedded in complex organizations such as academic research laboratories create intractable regulatory and governance issues and, unfortunately, sometimes lead to serious or even deadly outcomes. Overlaying bureaucratic procedures on spaces and actors lacking a sense of accountability to norms that may in real or perceived terms interfere with their productivity highlights the central challenge in any regulatory system: to balance autonomy and expertise with responsibility and accountability. Under these conditions, accountability may be, in the end, illusory.

…Rather than an automatically self-correcting system of strictly codified practices, Eastern’s EHS-MS relies on case-by-case discretion that values situational variation and accommodation. Compromises between conformity and autonomy produce a system that formally acknowledges large and legitimate spaces for discretionary interpretation while recognizing the importance of relatively consistent case criteria and high environmental, health, and safety standards. [cu][cv][cw][cx]Marsha, Eastern’s principal attorney, noted the difficulties of balancing standardized ways of working in high-autonomy settings, voicing concern about “the exceptions [that] gobble up the rule.” The logic of the common law is reproduced in the EHS-MS because, like our common law, only some cases become known and part of the formal legal record: those that are contested, litigated, and go to appeal. In this way, the formal system creates a case law of only the most unusual incidents while the routine exceptions gobble up the rule.

…safer practices and self-correcting reforms are produced by surrounding the pocket of recalcitrant actors who occupy the ground level of responsibility with layers of supportive agents who monitor, investigate, and respond to noncompliant incidents. In the end, we describe not an automatic feedback loop but a system that depends on the human relationships that constitute the system’s links.[cy][cz][da]

Group Comments

[a]Interesting set of different perspectives…

[b]The quote “They spent all this time wondering if they could, that no one thought to think about if they should” is the first thing that comes to mind when I read this sentence.

[c]Why are these viewed as diametrically opposed?  They can be complimentary

[d]In practice, have you found this to be the case? I find this perspective interesting, because at least in my experiences and the experiences of those I’ve interacted with, practically, they do often conflict (or, at least are *perceived* as conflicting, which really may be all that matters, culturally)

[e]In many of the issues I have explored as a grad student, I have noticed that this “freedom” often translates into no one actually being responsible for things for which someone really SHOULD be responsible. And if faculty step up to take responsibility, they are often taking on that responsibility alone.

[f]I think it’s strongly dependent on awareness (often via required training) and leadership expectations.  In instances where both were sound and established, I’ve seen these elements to be complimentary.

[g]I wonder what this training would look like. In my experience, a lot of training is disregarded as an administrative hoop to jump through every once in a while. I also think it’s wildly dependent on the culture of the university, as it exists. There is often little recourse to leverage over faculty to modify their behavior if it’s not (1) hired in, (2) positively incentivized, or (3) socially demanded by faculty peers. It seems difficult to me to try to newly instill such training requirements, with the goal of making PIs aware of their responsibility for ensuring safety. If there are no consequences (short of a major accident drawing the eye of the law), no social pressure to engage in safe behavior, and no positive incentive structure to award participation, why would faculty change their behavior? Many of them are already aware of the safety requirements—many of them just choose to prefer short term productivity and to prioritize other metrics. In an ideal world, I think I would agree with you that training at the University level would be sufficient, but I think there needs to be a much broader discussion of faculty *motivation*, not just their awareness.

[h]Agreed, the culture/environment aspects are huge in terms of how such awareness training is received.  There’s multiple incentive models, and I’d hope that legal liability isn’t the only one that would lead to proactive action.

[i]Sounds like a training deficiency if that’s the perception.

[j]What are you defining as “training”?

[k]Awareness of their obligations/requirements for both administrative (university) and regulatory elements.  This should be provided by the institution.

[l]which should include process safety

[m]This is a bit vague. Uniform practices? A one size fits all approach?

[n]This caught me out a bit as well. If all they were finding were minor infractions, do we actually have a problem here?

[o]I’m curious what these “minor infractions” were, though. What’s the scale? What’s the difference between a major and minor infraction? 3,000 opportunities for individual chemical exposures or needle pricks may be considered small when it comes to the EPA, but it seems quite substantial when it comes to individual health and safety

[p]In general, minor infractions involve things like labellng of waste containers, storage times in accumulatins areas, etc. without any physical resulting impacts. EPA writes these up and can fine for them, but infractions don’t involve physical damange

[q]Interesting…. this is what caused problems for us at Texas Tech before our accident. Individual oversight often meant no oversight…

[r]Agreed, some form of checks-and-balances should be implemented to verify elements are being completed.

[s]In my experience this is often a techniques employed by higher administration to shift the blame on frontline researchers and their supervisors.

Combine with an underfunded EHS department and this situation results in no oversight or enforcement of these requirements.

[t]But administrators are not experts as the PIs claim they are, If PI’s want freedom and recognition as experts then they do need to be held accountable but EMPOWERED by providing support mechanisms. Responsibility without empowerment is useless.

[u]My eyes immediately went to the “new admin support roles.” If you have someone who understands both the regulations and the relationships in the department, I would think that person would be more effective than someone who shows up from a different department once per year with a checklist.

[v]Agree with Anonymous. If you want the freedom, you take on the responsibility. Don’t want the responsibility, hand over the freedom.

[w]I agree that faculty should be responsible. The common arguments I hear is that faculty aren’t in the lab all the time and can’t always be responsible for what happens day to day. Sort of a cynical view that says that faculty are the idea people and others (students?) should be the implementers…

[x]I don’t think anyone expects them to be responsible for everything every single day though. I think the idea is that they should be responsible for setting the tone in their lab and having standards for the graduate researchers working in their labs – and they should be making an effort to visit their labs in order to walk around and make sure everything is operating as it should.

[y]@Jessica I agree, but if they aren’t overseeing the day-to-day elements, they need to assign that responsibility to someone and make that assignment known to the research group.  AND they need to support and empower that individual.

[z]I think I agree with Jessica here. Perhaps, someone with an eye and responsibility for safety NOT being in the lab on the day-to-day is part of the problem. maybe it *should* be a responsibility of PIs to visit their labs, to organize them, to keep up safety standards, inventory, etc. Or, perhaps it is their responsibility to hire someone to do this, specifically. Perhaps these responsibilities should be traded for teaching responsibilities, and thus institutions with high research focus can focus on hiring research teachers and managers (PIs) who are trained as such, and teachers who are actually trained as teachers.

[aa]In the 1970’s and 80’s, externally funded PIs would hire people to do this kind of stuff (often called “lab wives”) but funding for this function was shifted to additional student support

[ab]Blending what Sara and anonymous said while student support has gone up, it has also become more transactional in that it is more linked to teaching duties, while research assistantships tend to be the exception in many “research heavy universities”.

[ac]I think the responsibility of the PI should be first to open the door for safety related discussions amongst the group, and then to make the final decision on acceptable behavior if consensus is not achieved. Following that, they should bare the responsibility of any ramifications of that decision. I think they can achieve awareness of what is happening in their lab without being there every day, but they need to continuously allow the researchers to voice their concerns

[ad]I also think that PI’s might need tools to help them be accountable.  Particularly new faculty

[ae]This the unfortunate part of interdepartmental politics, how far is the new faculty wiling to speak up, when in 5 years the same older faculty members will be a part of their tenure decision.

[af]This goes to early commentary on the shifting of regulatory compliance to researchers: were any researchers involved in these discussions or were PIs/lab managers speaking for them in these discussions?

[ag]I’d hope some (if they existed at this institution) laboratory safety officers were participants.

[ah]Lab safety officers were often active participants, but often on a parallel track to the faculty level discussions. I guess which group carried more clout in the system design?

[ai]The wording of this question seems to imply that lab safety impedes on lab productivity

[aj]Building upon this, there is evidence that when safety concerns are not an issue (due to correct practices) productivity is actually better.

[ak]I don’t have evidence for this, but I think it depends on how prevalent compliance is. If everyone is being safe in their labs then I think overall productivity would go up. If some people start cutting corners then while they may get short term improvement in productivity, in the long term everybody suffers (evacuations and accident investigation halting research, bad laboratory practices accumulating, etc.)

[al]Does this imply that “students” are a class of people whose rights and responsibilities are different from other people in the laboratory?

[am]Or to put it another way – why are students living in their labs?

[an]One of the EHS professionals involved in these discussions told me “When you shut down one laboratory you have a mad faculty member; when you shut down a second, you have an environmental management system.”

[ao]Faculty do notice when their colleague’s labs are shut down…

[ap]In what way is the system “working well”? What mission is being served by the way the origional system was structured?

[aq]for compliance in their lab

[ar]This seems contradictory to earlier comments that researchers are responsible for their own compliance

[as]The government does not believe this. They believe that the president of the institution is responsible for instituional compliance. The president of the institution may or may not believe that

[at]However, since the presidents turn over much more quickly than faculty, faculty often outwait upper admin interest in this issue

[au]I hear this a lot, but then I have to wonder what the word “responsibility” means in this context. The president of my university has never been to my lab, so how would he be responsible for it?

[av]The subtext I see here is that it would be awfully expensive to have the enough staff to do this

[aw]A ‘dish best served’ by faculty peers rather than university admin staff or legal.

[ax]I don’t believe faculty will have these conversations with each other due to politics. We can have someone they respect make assessments by doing a myriad of approaches including having industry people come visit.

[ay]Or in other words, who is willing to break be the bearer of bad news?

[az]I like this. When I have discussed having issues in my own lab with others outside of my institution, so many respond with “tell the head of the department.” And I’m surprised that they don’t seem to realize that this is fraught with issues – this person’s labs are right across the hall from mine – and this person visits his lab far more often – and this person has seen my lab – he already knows what is going on and has already chosen to “not see it.” Now what?

[ba]Building upon more that “head of department” does not actually mean higher in the hierarchy of authority. These people are still colleagues at the same level of authority most of the time.

[bb]I remember hearing during the research process for the NAS report on Academic Lab Safety, that Stanford Chem had an established structure for true peer inspections of other faculty spaces and in some instances risk assessment of new research efforts.  From what I recall that was successful and implemented as that was the expectation.  So maybe it just needs to be the expectation, rather than optional.  Another alternative is you staff the administrative side with folks that have research experience, then the message may be better received.

[bc]I really like that idea – that faculty would be engaged in the risk assessment of new research efforts. You are right that it would have to be established as a norm at the university – not as optional work – or work that goes to a committee that virtually no one is on.

[bd]The biosafety world is run by a faculty involved oversight committee for grant proposals, for historical funding reasons. My experience is faculty are very reluctant to approach this process critically as peer review, but it does put biosafety issues on the agenda of the PI writing the grant

[be]Interesting that this group is left out.  As an EHS employee I see an opportunity to be the consistency and impartiality across departments.  Also can disseminate best practices that are implemented in some labs

[bf]Absolutely, and serve as a valuable mechanism for knowledge transfer.

[bg]Yes, delegate task responsibility but not ultimate liability.

[bh]Yes, we have a form we have for the delegation of tasks to the Lab Safety Coordinator (LSC). Ultimate responsibility at PI level, but allow them to delegate tasks using this form.

[bi]That is great that its formally documented!

[bj]Lawyers believe this. Safety professionals not so much.

[bk]Should this responsibility be part of the on boarding process for new laboratory workers in general? I would note that “Eastern U” has had problem with grad student and postdoc misbehavior in the lab, including criminal acts against lab mates. These are handled by police rather than EHS, but EHS is often involved in assessing the degree of the problem.

[bl]Herein lies one of the problems with the unorganized academic hierarchy where PI’s fall into. While systems that improve safety should always attempt to be non-punitive, at the end of the day the repeat offenders still have the freedom to not comply. 

This can become problematic if that particular faculty member has a more influential role and position in their department.

[bm]I agree with you that in this case study faculty may have the freedom not to comply until the situation escalates. It is not the case that this is always true. Some universities have the authority to shut down labs. There may be a mad faculty member, but it is a powerful statement to the rest of the faculty to get their acts together.

[bn]The thing about this, thought, is that shutting down a lab is very nearly the “nuclear” option. I would imagine it would be incredibly problematic to determine who deserves to have their lab shut down and who doesn’t. And what has to occur before the lab is allowed to reopen.

[bo]The other problem this presents is the impact of a lab closure on “innocent” grad students in the lab and colloborators with the lab, both on campus and externally. These factors can make for a very confusing conversation with PIs, chairs and deans, which I’ve had more than once

[bp]In my experience, the only time admin and safety committees have even considered lab shutdown is when there’s outright defiance of the expectations and no effort made to resolve identified safety and compliance issues.  I’m not sure I’d considered those criteria as being a ‘nuclear’ option, seems more like enforced accountability IMHO.

[bq]I feel like what you just described is what I meant by “nuclear” option. Their doesn’t seem to be anything between “innocuous notice” and “lab shutdown.”

[br]Agree on the point as well about graduate students being the ones who actually “pay” in  a lab shutdown. If a faculty member is tenured, then they are getting their paycheck and not losing their job while their lab is shutdown. However, it directly harms the graduate students in no uncertain terms.

[bs]@Jessica Then it sounds like the institution lacks some form of progressive discipline/resolution structure if there’s only one of two options.  Sadly some of that (progressive discipline structure) needs to be created with the involvement of HR to ensure labor laws and bargaining unit contracts aren’t violated.  But there absolutely needs to be a spectrum of progression of options before lab shutdown is all thats left.  And yes, I agree that the graduate student(s) bear a disproportionate penalty at times in the event of a lab shutdown.

[bt]Is this after having the faculty sign on to the program through the registration process?

[bu]I would say “hoped” here rather than “assumed”

[bv]Why no documentation of the informal interactions/feedback?  Or was it optional?  From a regulators perspective, if it isn’t documented it never happened.

[bw]Good point.  The accountability system could take the informality into account but if a lab racks up a bunch of minor, informal infractions it is probably indicative of culture.

[bx]I also worry that not having it documented could lead to the ability for the feedback to be “forgotten” or denied as to having happened in the future if a larger infraction occurs.

[by]This is something that was discussed as problematic in the paper. If it is undocumented, no one knows just how many warnings an individual has had. It is also one of the problems with solely relying on researchers watching out for each other. You don’t know how many times a convo was had and weather the issue was fixed OR the person just got tired of correctly their colleague.

[bz]We are trying a pilot program using this approach. A EH&S building sweep to build a relationships with labs and let them know we don’t just visit to document non-compliance. We are not sure what we’ll document, since these are friendly visits.

[ca]Have you read Rosso’s paper about the SPYDR program they do at BMS? I thought it was a very interesting approach that could be adapted to the academic environment.

[cb]https://drive.google.com/file/d/1oCu1q6xqc12PpArTaDQ3lmlIvk-zpFbk/view?usp=sharing

[cc]Thank you Jessica!

[cd]What I particularly like about the feel of this approach is that they are having management intentionally visit labs in order to ASK THE RESEARCHERS what they feel like the problems are. This speaks to me because, as a graduate student, I was frustrated with EHS inspections in which they were focused on their checklist and minor infractions that didn’t matter while they walked right past really problematic things that were not on the checklist – and I would’ve much rather been encouraged to discuss those issues!

[ce]@Jessica Great point about inspectors being too ‘tunnel visioned’ on their compliance checklist and not able to be truly receptive to bigger issues, whether observed or vocalized during (collaborative) discussion with the research group members.

[cf]Is this a supervisor of the lab or to the lab?

[cg]There was a PhD dissertation at “Eastern U” that described how this was negotiated and the impact of those negotiations on the design of the computerized database that was used to implement the system. It’s a fascinating story to read.

[ch]Are you able to quickly find a link to share here?

[ci]That would be great to see!

[cj]This seems very strange to me. Was any additional information provided about the substantive changes that were made that could’ve potentially justified this type of response?

[ck]In working with the EPA, an agreement we were working on was almost scuttled by too many commas in a key sentence. It took 6 months to resolve it because sets of lawyers were convinced that those commas changed the meeting entirely. I couldn’t see the difference myself

[cl]The way through this was for the “clients” (techmical people from the school and the EPA) to get together without the lawyers in the room and come to a mutual understanding and then tell the lawyers to knock it off

[cm]Hardly fair to hold PIs accountable but give the university a pass on providing a safe work place.  Although since this is outside the “academic freedom” morass it should be easier to address

[cn]Or are expensive and inappropriate for the PI to do.

[co]I have some of the same problems with facilities

[cp]I am disappointed that this is not a bigger part of this paper. Faculty are often characterized as “not caring” when I think the situation is much more complex than that. As a graduate student trying to get problems fixed, I can certainly attest to how difficult this is – even to know who to go to, who is supposed to be paying for it, who is supposed to be doing the work – and while I am chasing all of that, I am not getting my research done. It can be atrocious to try to get responsiveness within the system – and I can see why it would be viewed as pointless to chase by researchers at least at some institutions.

[cq]As an EHS staff member I can see a cultural rift between the groups.  Comes down to good leadership at the top which is in short supply.  Faculty and staff all work for the same university…

[cr]@Jessica I agree that getting resolution on infrastructure issues as a graduate student can be a huge time sink and at times even ineffective.  That’s where having an ally/collaborator from the professional staff or EHS groups can be invaluable. They often know the structure and can help guide said efforts.

[cs]I would be interested in what percentage of the faculty had this attitude. In my experience, it represents about 20% of an institutional faculty population; 20% of the faculty are proactive in seeking EHS help; and the remaining 60% are willing to go with the departmental flow with regards to safety culture.

[ct]” Faculty and staff all work for the same university…” and work on the same mission, although in very different ways. 

Another challenge is that many faculty don’t have a lot of identification with their host institution and often perceinve they need to change their schools in order to improve their lab’s resources or their personal standing in the hierachy

[cu]And if we don’t have experts in actual scientific application looking at the problems or identifying problems then the system is broken. A lab can look “clean and safe” but be filled with hazards due to processes. I believe a two tier audit system needs to be in place: First tier compliance Second tier: Safety in lab processes

[cv]YES! I have often been frustrated when having discussions in the “safety sphere” on these issues. By coming at it from the “processes” perspective, the compliance rules make a lot more sense.

[cw]Reliance on point-in-time inspections can be misleading.  My group (EHS) does this for all labs across campus.  It is a good start- ensures the lab space is basically safe.  But what is missed is what happens when people work in the lab (processes).  In a past life, different industry, I worked with a group to develop best practices for oil spill response.  If response organizations subscribed to the practices they had guidelines on how to implement response strategies.  Not super prescriptive, but set some good guardrails.  Might be useful here?

[cx]Experts in process safety are often soaked up by larger industries with much more predictable processes. The common sense questions they ask (what chemicals do you use?, who will be doing the work?) are met with blank stares in academia

[cy]I think this is a profound observation which leads to the success or failure of this kind of approach.

[cz]…this is also foreshadowing for some of her other papers on this case study :).

[da]Spooky!

Free On Line Chemical Safety Course from ACS!

A new on-line chemical safety course has just gone live at the ACS Learning Center entitled “Foundations of Chemical Safety and Risk Management for Chemistry Students.” The intended audience is students who have completed at least two semesters of General Chemistry with lab and one semester of Organic Chemistry with lab. The course is being offered at no charge to the community. 

The course can be found at https://institute.acs.org/foundations-chemical-safety.html

Some usage notes about the course:

1. What is the approximate length of time needed to complete the course?

The time to complete the course is estimated to be about 15 hours. Each of the 17 units are designed to be completed in under an hour. If a student chooses to access the advanced enrichment material, the time to complete the unit may be a bit longer 

2. Can I assign specific units to a class?

No. Each unit builds on the previous unit. A student must successfully complete the unit material and a unit assessment before proceeding to the next one.

3. Do I have to have an ACS log in ID?

Yes, registration on the ACS web site is necessary to access the course. However, you do not need to be an ACS member in order to create a log in ID at this site.

The Topics Covered are:

  • Introduction
  • UNIT 1: From Rules to Risk
  • UNIT 2: OSHA and EPA Regulations for Laboratories
  • UNIT 3: Communicating Hazards – GHS and the SDS
  • UNIT 4: Communicating Hazards – NFPA
  • UNIT 5: Recognizing Hazards – Toxicity
  • UNIT 6: Recognizing Hazards – Flammability
  • UNIT 7: Recognizing Hazards – Corrosivity
  • UNIT 8: Recognizing Hazards – Reactivity
  • UNIT 9: Recognizing Hazards – Physical and Biological Hazards
  • UNIT 10: Assessing Risk – Laboratory Operations
  • UNIT 11: Assessing risk – Hazard and Risk Assessments
  • UNIT 12: Minimizing risk – Chemical Storage
  • UNIT 13: Minimizing risk – Hazardous waste
  • UNIT 14: Minimizing risk – Elimination, Administrative, and Engineering Controls
  • UNIT 15: Minimizing risk – Personal Protective Equipment
  • UNIT 16: Preparing for and Responding to Emergencies
  • UNIT 17: Risk Management – Capstone RAMP Assessment
Questions and Comments about the course can be submitted to safety@acs.org

Key Chemical Safety Education Resources

About this list

In March, 2019 the ACS held its second “Safety Summit” on the topic chemical safety education. These links provide more information about the summit’s structure, participants, exploratory questions and outcomes. Questions about the summit can be directed to Ralph Stuart, the chair of the ACS Committee on Chemical Safety at ralph@rstuartcih.org

As part of the preparations for this meeting, a list of chemical safety education resources was compiled. These resources cover different chemical use scenarios, primarily in teaching and research laboratories. This list is provided here as a service to the chemistry safety education community (you can download it below). If you know of a resource that you think should be on this list, please let us know inthe comments section below or via e-mail at membership@dchas.org

Guidance Documents from ACS Committees

Guidelines for Chemical Laboratory Safety in Secondary Schools

audience: high school educators
authors: ACS Committee on Chemical Safety
last update: 2016

This publication includes 53 learning outcomes for students and clear, concise explanations for teachers on select safety topics including basic safety information, RAMP, GHS, Fire Safety, NFPA, hazardous waste, and SDSs.

ACS Guidelines and Recommendations for Teaching Middle and High School Chemistry

middle and high school educators SOCED 2018
Laboratory safety is included in these Guidelines with information on safety equipment and references as well as a discussion of “RAMP” principles. Revised in 2018.

ChemMatters Online

high school educators ACS staff online

In addition to articles related to high school chemistry education, this page includes links to key safety education resources for this audience.

Better Rainbow Demonstration
high school students and educators ACS Education and Scientific Advancement Divisions 2016; forthcoming
The videos introduce chemical safety to the high school students and provide additional overview of some issues related to the safe use of chemicals in the high school environment.

ACS Guidelines for Chemistry in Two-Year College Programs

two-year colleges educators SOCED 2015
In addition to sections on Safety Culture and Laboratory Safety, the development of a safety culture in the institution is woven throughout the Guidelines.

Guidelines for Chemical Laboratory Safety in Academic Institutions

undergraduate-graduate educators CCS 2016
This publication presents 104 chemical safety learning objectives for undergraduate curriculum designers and instructors and outlines how learning should progress into graduate education based on RAMP. Published in 2016.

ACS Approval Program for Bachelor’s Degree Programs includes the Guidelines and supplements to the Guidelines.

undergraduate educators CPT 2015 and 2017
The Guidelines represent the requirements for a department to offer an approved bachelor’s degree program, and the characteristics of that program, including a mandatory safety skills requirement for the department to follow, and the students to learn about. The Safety Supplement to ACS Guidelines: describes in further detail the aspects of safety development that a program must implement, and for the students to understand as part of their education in chemistry.

Safety in Academic Chemistry Laboratories

first- and second-year undergraduate students CCS 2018
This 8th Edition of the CCS flagship publication Introduces RAMP and communicates practical laboratory safety information to first- and second-year undergraduate students. Includes Arabic translation.

ACS Exams Institute Draft Safety Exam

undergraduate educators ACS Exams Institute Forthcoming
Currently (spring 2019) in trial testing, this 60 item multiple choice exam is designed to address safety topics typically addressed during the first two years of undergraduate chemistry coursework.

Teaching Chemical Safety and Information Skills Using Risk Assessment

undergraduate educators ACS Symposium Series 2016
Part of in Integrating Information Literacy into the Chemistry Curriculum, this chapter demonstrates how risk assessment (JHAs) can be used to teach information skills and safety competencies by providing rationale and examples (including assessment data) which can be incorporated into undergraduate learning..

Identifying and Evaluating Hazards in Research Laboratories publication and website

undergraduate and graduate researchers CCS 2014
This online reference presents a detailed introduction to the academic research community on risk assessment and provides practical examples using five techniques: Control Banding, Job Hazard Analysis, What-if, Checklists, and SOPs.

Laboratory Risk Assessment video

research laboratories CHAS 2018
Emphasizes importance of conducting a risk assessment of laboratory work and maintaining situational awareness as laboratory work proceeds.

Graduate Student Workshops

graduate students and faculty CHAS ongoing
A three-hour workshop for graduate students and faculty about developing and maintaining laboratory safety programs in the research setting. Offered at the ACS National Meeting. Started in 2018 and ongoing.

Accessibility in the Laboratory

all levels of education ACS Symposium Series 2018
A valuable update to the 2001 edition of “Teaching Chemistry to Students with Disabilities: A Manual for High Schools, Colleges, and Graduate Programs”, this symposium book integrates safety into broader best practice discussions for students with a range of accessibility issues, including topics such as visual and hearing impairments, invisible and physical disabilities, service dogs, and more.

ACS Style Guide Safety Chapter

Forthcoming. authors and reviewers ACS Pubs
The 2019 Edition of the ACS Style Guide will include, for the first time, a chapter designed to provide guidance for authors and reviewers on how to prepare and include publication appropriate safety summaries in manuscripts.

CHED Demonstration Guidelines

educators and students. All levels. CHED 2016
A concise set of guidelines to aid experienced chemical practitioners in considering all components of demonstrations, including special notes for transportation and communication as well as best practices before and during a chemical demonstration.

Journal of Chemical Health and Safety

safety professionals CHAS ongoing
JCHAS is a peer-reviewed journal that addresses chemical safety education topics among other topics chemical safety professionals are involved

The DCHAS-L e-mail list

CHAS members CHAS ongoing
The list is available to members of the Division and provides an active discussion of technical and cultural issues faced in improving safety practices in all workplaces, with an emphasis on labs

CHAS Professional Development Workshops

safety professionals CHAS ongoing
Daylong workshops for chemical safety professionals at national and regional meetings covering regulatory and technical topics.

C&EN SafetyZone blog and safety articles

Chemistry community ACS Publications ongoing
Ongoing coverage of chemical safety related news items

ACS Education Resources with Safety Guidance

Guidelines

(overarching frameworks for organizations to use to build a safety foundation and culture)

Training

(activities to prepare educators and learners to use tools and practice safety, building a safety foundation)

Tools

(resources for demos, classroom activities, and events that develop safety awareness and knowledge)

Information

(introduction to safety concepts, tools, skills, and careers that develop safety awareness and knowledge)

Chemical Safety Education Resources from outside the ACS

Laboratory Safety for Chemistry Students; Hill and Finster, 2016 edition

Laboratory and chemical hazards, routes of exposure, ways to manage these hazards, and handling common laboratory emergencies are covered. Emphasis on the ability to safely use hazardous chemicals in the laboratory by applying safety principles that prevent and minimize exposures.

Prudent Practices in the Laboratory, National Academies Press, 2011

An authoritative reference on the handling and disposal of chemicals at the laboratory level. The revised edition has an expanded chapter on chemical management includes nanotechnology, laboratory security, and emergency planning.

Safe Science
Promoting a Culture of Safety in Academic Chemical Research
, National Academies Press, 2014

Examines the culture of safety in research institutions and makes recommendations for university leadership, laboratory researchers, and environmental health and safety professionals to support safety as a core value of their institutions.

A Guide to Implementing Safety Culture, APLU, 2016

Roadmap for a university-wide effort to strengthen a culture of research safety. The guide has action steps, resources, and recommendations to help navigate the challenge of changing the culture of the institution. Includes reading lists, tools, strategies, illustrative examples, and/or best practices.

Inquiring Safely series, NSTA, 2003

Introduction of General Safety in the classroom for varying levels of education. Encourages safety within a climate of inquiry incorporates inclusion adjustments. Responsibility guidelines included.

Flinn High School Safety products, Flinn Scientific

A variety of products and resources related to chemical safety for teachers. Product site that may be filtered by education level.

Safety Videos library, Dow Chemicals, 2014

Videos that cover industrial safety culture and practices for laboratory safety. Each module covers information that has worked successfully at Dow. It includes basic explanations of the topics and relates them to safety. Dow’s granted ACS an opportunity to use the videos in its upcoming e-learning safety course.

Green Chemistry education web page,
ACS Green Chemistry Institute

Resources and programs give students and educators the opportunity to learn the chemistry concepts and skills that embrace life cycle thinking and provide a foundation for contributing to a sustainable future through chemistry.

US Chemical Safety Board case studies and videos

Videos describing lessons from significant safety incidents, including academic and high school laboratories.

Practical Guide To Chemical Safety in the UK

The web page outlines the practical aspects of chemical safety programs in the UK, where the regulatory context is different than from the US setting.

JCHAS Editor’s Spotlight: Engaging senior management to improve safety culture

The JCHAS Editor’s Spotlight for the July / October 2019 issue of the Journal of Chemical Health and Safety is shining on:

Engaging senior management to improve the safety culture of a chemical development organization thru the SPYDR (Safety as Part of Your Daily Routine) lab visit program

By Victor Rosso, Jeffery Simon, Matthew Hickey, Christina Risatti, Chris Sfouggatakis, Lydia Breckenridge, Sha Lou, Robert Forest, Grace Chiou, Jonathan Marshall, Jean Tom

All authors are affiliated with Chemical & Synthetic Development, Bristol-Myers Squibb Company,

You can download the article here:

  • Failure to educate — Failure to train; Harry J. Elston
  • Strategic opportunities in chemical safety education: A report on the 2019 ACS Safety Summit; Ralph Stuart
  • Lessons learned – Mercury thermometer incident; Elizabeth Czornyj, Imke Schroeder, Nancy L. Wayne, Craig A. Merlic
  • An immediate onsite chlorine leakage disaster management plan; Yehya Elsayed, Abdel-Qader Al-Ameri, Taj El-Sir Ahmed, Mohamed Idreese, Sofian Kanan
  • Evaluation of the implementation of occupational health, safety, and environment management systems in higher education laboratories; Fatma Lestari, Anom Bowolaksono, Sri Yuniautami, Tia Retno Wulandari, Saraswati Andani
  • Elements of experiment safety in the laboratory; Lee C. Cadwallader, Robert J. Pawelko
  • Looking at the bigger picture: Evaluating responder risk in a tritium spill; Harry J. Elston, Daren Perrero
  • A storage cabinet design for research chemicals for developing nations; Abdullah Hussein Kshash
  • Efficacy of existing transient models for spill area forecasting; Raja S., Reddy T.L.P., Tauseef S.M., Tasneem Abbasi, S.A. Abbasi

CHAS members can access this issue at https://www.sciencedirect.com/journal/journal-of-chemical-health-and-safety?dgcid=raven_sd_via_email


Organic Class Lab Safety Topics Survey results

With the support of an ACS Innovative Project Grant, the ACS Division of Chemical Health and Safety is partnering with the Division of Chemical Information and ACS Safety Advisory Panel to develop teaching resources to help students in undergraduate organic teaching labs develop hazard identification and risk assessment skills appropriate to their work in the lab. To help us with this work, we developed a survey about organic chemistry laboratory courses taught at the undergraduate level.

With the help of the DCHAS-L e-mail list, we were able to get thoughts from 63 people about the most important organic teaching laboratory exercises to consider in our work as well as some general information about safety practices they employ in this setting.

You can review the detailed results of this survey here:

We’d also appreciate it if you would share with us information about a question we forgot to ask in the first survey: What are your requirements for PPE in the organic teaching lab?

[sform]6[/sform]

If you would like to share any thoughts on this work, please send them to Ralph Stuart at membership@dchas.org