Tag Archives: nanosafety

Nanosafety and Awards Presentations at Boston National Meeting

Nanomaterials: Applications, Safety Considerations, & Implications for Human Health & the Environment

Role of the National Nanotechnology Initiative in the Safe and Responsible Development of Nanotechnology.
M. Meador

Nanotechnology: Where is it Today and is EHS a Part of Successful Commercialization.
C. Geraci

Back from the future: What nanotechnology can teach us about chemical safety today.
K. Kulinowski

CHAS Awards Symposium

Looking forward: Fifty years experience in chemical safety.
N. Langerman

Zooming out: The future of chemical-research health and safety through a wide-angle lens.
K. Brown

Innovation transforming lives through the power of clean water.
D. Schmidt

Yale’s Safety Advisor Model for Supporting and Integrating Safety into Research. P. Reinhardt

Fostering a culture of safety at the University of North Carolina at Chapel Hill. C. Brennan, N. Eskew

Dow Lab Safety Academy: Lessons Learned & Future Opportunities.
L. Seiler

JCHAS Editor’s Spotlight: A methodology on how to create a real-life relevant risk profile for a given nanomaterial

The Editor’s Spotlight for the January / February 2018 issue of the Journal of Chemical Health and Safety is shining on:

A methodology on how to create a real-life relevant risk profile for a given nanomaterial
by Christa Schimpel, Susanne Resch,  Guillaume Flament,  David Carlander, and Izaskun Bustero

The abstract for this Open access article is:

With large amounts of nanotoxicology studies delivering contradicting results and a complex, moving regulatory framework, potential risks surrounding nanotechnology appear complex and confusing. Many researchers and workers in different sectors are dealing with nanomaterials on a day-to-day basis, and have a requirement to define their assessment/management needs.

This paper describes an industry-tailored strategy for risk assessment of nanomaterials and nano-enabled products, which builds on recent research outcomes. The approach focuses on the creation of a risk profile for a given nanomaterial (e.g., determine which materials and/or process operation pose greater risk, where these risks occur in the lifecycle, and the impact of these risks on society), using state-of-the-art safety assessment approaches/tools (ECETOC TRA, Stoffenmanager Nano and ISO/TS 12901-2:2014).

The developed nanosafety strategy takes into account cross-sectoral industrial needs and includes:

  • (i) Information Gathering: Identification of nanomaterials and hazards by a demand-driven questionnaire and on-site company visits in the context of human and ecosystem exposures, considering all companies/parties/downstream users involved along the value chain;
  • (ii) Hazard Assessment: Collection of all relevant and available information on the intrinsic properties of the substance (e.g., peer reviewed (eco)toxicological data, material safety data sheets), as well as identification of actual recommendations and benchmark limits for the different nano-objects in the scope of this projects;
  • (iii) Exposure Assessment: Definition of industry-specific and application-specific exposure scenarios taking into account operational conditions and risk management measures;
  • (iv) Risk Characterisation: Classification of the risk potential by making use of exposure estimation models (i.e., comparing estimated exposure levels with threshold levels);
  • (v) Refined Risk Characterisation and Exposure Monitoring: Selection of individual exposure scenarios for exposure monitoring following the OECD Harmonized Tiered Approach to refine risk assessment;
  • (vi) Risk Mitigation Strategies: Development of risk mitigation actions focusing on risk prevention.

This article and the rest of the issue can be found at ScienceDirect site

Also included in this issue of JCHAS are:

Don’t ever tell me…
Harry J. Elston

Photocatalytic degradation of phenol solution using Zinc Oxide/UV
Original research article
H. Dewidar, S.A. Nosier, A.H. El-Shazly

A methodology on how to create a real-life relevant risk profile for a given nanomaterial
Open access – Original research article
Christa Schimpel, Susanne Resch,  Guillaume Flament,  David Carlander, and Izaskun Bustero

A case history of legacy chemical cleanup in the lab
Original research article
L.C. Cadwallader, R.J. Pawelko

Development of custom calibration factors for respirable silica using standard methods compared to photometric monitoring data
Pages 27-35
Leon F. Pahler, Danielle D. McKenzie-Smith, Rodney G. Handy, Darrah K. Sleeth

Engineering intervention to reduce API dust exposure during milling operation
Original research article
Vivek Kanjiyangat, Manikandan Hareendran


Safety Presentations from the Atlantic Basin Conference on Chemistry

ACS Safety Initiatives: Impact On The Global Chemistry Enterprise
Neal Langerman

US safety initiatives as influences on global laboratory safety
Russ Phifer

Approaching research and scale-up safety through process-oriented solutions
Harry J. Elston, Ph.D., CIH

Social and Ethical Implications (SEI) of Nanotechnology
Larry Gibbs, CIH, FAIHA

Analyzing academic laboratory accidents to prevent accidents
Craig Merlic

Risk Perception in Academic Laboratories
Imke Schroeder, Ph.D.