Tag Archives: Hazard Assessment

Webinar Questions: Risk and Green Chemistry Rating Systems

There were 12 questions about risk and green chemistry rating systems raised by the audience.

These answers are from both Dr, Denlinger and Mr. Stuart; feel free to share your thoughts and follow up questions in the comments section below. (Note: the comments section is moderated, so there may be some time delay before your question shows up.)

1.) Who decides these risk and consequence coefficients – are they in any way standardized?

Kendra’s response: The individual filling out the JHA decides which numbers should go into the risk rating calculation. I think it would be possible to standardize them in some ways (see question 7), but in the end there will always be some differences from one researcher to another.  

Ralph’s additional comment: In an ideal world, we would be able to use statistical analysis of real world incidents to assign these coefficients; however,  adverse lab incidents are not well documented, so such data is not readily available in most cases, particularly in the research setting. For this reason, ultimately, these coefficients will represent human judgements.

However, the goal of the process is to prioritize the hazards of the process so that control measures can be appropriately applied to those hazards. Fortunately, this prioritization can usefully proceed without statistical evidence, by enlisting a qualified team of people to perform the JHA based on their experience with similar processes. 

2.) The JHA shown missed stating the physical electrical hazards.

Kendra’s response: Good point!

Ralph’s additional comment: This is a good example of how safety reviews can benefit from reviews by other people.

3.) Is there any way to scale the green lab and risk assessment process up so that we are evaluating labs or specific projects or students.  Researchers may find the time required to evaluate each reactions prohibitive. 

Kendra’s response: Yes, there probably would be many ways to scale up the risk assessment process in order to save time. However, I would caution against doing so. I found it so interesting and helpful because of the individual nature of the JHA and the fact that it takes some time to fill out completely.

In my experience, too many students are thrown into the lab setting with little training to perform their duties safely, and requiring the JHA before performing something new in the lab would help alleviate this problem because the student is forced to sit down and actually think about what they’re going to do. Furthermore, it seems to me that safety should be a focus of the graduate school experience, so the time spent filling out JHA’s could become part of the process of obtaining a PhD rather than something extra.

Ralph’s additional comments: In the environmental health and safety world, this strategy is called “hazard banding” or “control banding“, depending on the specific application. As you suggest, this approach is driven by resource constraints, so it requires omitting process specific information from the hazard management process. So I agree with Kendra that this approach has to be carefully managed in the academic setting.

In that context, I would like to add that my experience is that safety review of chemical processes become quicker over time, particularly in the context of a specific research program. However, as Kendra suggests,  in the academic research laboratory, focused on the student experience, JHA’s for individual processes are appropriate, as they avoid the “Chinese whispers” or “telephone” problem associated with the oral transmission of process safety knowledge. As Dwight Eisenhower (among others) said: Plans are worthless, but planning is everything. This means to me that the JHA discussion is the point of the exercise, rather than the completed form.

4.) I would encourage you to incorporate a few basic biological parameters into your safety protocols.

Ralph’s response: If you are referring to managing biological hazards used as part of the research process, these are well addressed by Biosafety in Microbiological and Biomedical Laboratories, 5th Edition

5.) How much time does it take for hazard assessment in an organic chem research lab, and What time line do you recommend?  

Kendra’s response: It took me about an hour to fill out my JHA, though it was for an experiment that I’ve performed many times. It would probably take a bit longer for something new, AND it would be important to discuss the experiment with anyone in the lab who has performed it before or used the same chemicals and experimental set-up.

6.) Can this tool be used to define low risk labs and help keep them that way for ventilation savings? 

Kendra’s response: That’s a really interesting question! It seems like it could definitely be adapted for that purpose, though there would need to be some guidelines in place to make sure nothing changes (like ordering a new chemical that is more hazardous than those used in the past).

Ralph’s response: This is an approach that is of great interest to many people.  While at Cornell University, I helped to write an Laboratory Ventilation Management Plan that uses this strategy. In addition, I have published several articles in the Journal of Chemical Health and Safety that describes this approach in the LVMP.

7.) How do you quantify your hazard rating and quantify the probability of occurrence during the hazard analysis? Would each individual have the same risk level or will that vary significantly researcher to researcher? 

Kendra’s response: I assigned risk ratings using my experience in the lab. Newer students would probably need to get help from more senior students or research advisers. It’s also possible their risk ratings would be different because they’re newer to conducting research—they might be more likely to spill a chemical, for example. In this way, JHA’s might vary for one researcher as he or she gains more experience working in the lab.

The risk ratings would probably vary quite a bit from researcher to researcher, though the JHA is meant to be completed and used on more of an individual basis than some of the other hazard assessment tools. It seems like it would be possible to add in some guidelines to aid in conformity, like using SDS terms to correspond to severity of consequences (harmful, toxic, fatal).

Ralph’s comments: My experience has been that variations between researchers occurs when they are making different assumptions about a process. For example, some people might have easy access to a fume hood to perform their chemical work in, while others may not.  This difference can greatly impact the risk ratings and the consequent JHA. Identifying these differences are a key advantage of reviewing the JHA with other chemists.

8.) Has the safety of nano materials been addressed in this type of safety concerns?

Ralph’s comment: Yes, NIOSH, among others, has been conducting significant research into the hazards of nanomaterials. See their Nanotechnology web page for more information on this.

9.) Has an Life Cycle Assessment been conducted on the overall environmental and safety impacts of solvent use vs the alternative reaction methodologies? 

Kendra’s response: I’m not aware of any studies like this.

Ralph’s comment: I suspect that the ACS Green Chemistry institute web site would good place to look for such a LCA.

10.) Green solvent: I think there is exaggeration in using the word green in chemistry, especially solvents used for chromatography. Except for water, I don’t think there is any reagent that one can call “green”. Any thoughts? Thanks a lot 

Kendra’s response: We can really only talk about green chemistry when comparing more than one thing—solvent, reagent, process, etc. There are some cases where using water might be worse than using something else due to the disposal and treatment process. We can’t just look at something and decide that it’s green; we have to have something with which to compare. Toluene isn’t something you might label as being green, but most chemists would agree that it’s greener than using benzene. Even making that small change is better than doing nothing.

11.) Does the ecoscale assign a penalty for fairly benign solvents like water? 

Kendra’s response: No penalty is assigned for the use of water. As far as other solvents go, you can try it yourself using their online calculator! Find it here.

12.) A risk rating of 80 is clearly bad, but does the Hazard Assessment Tool help one evaluate a process involving five RR=10 tasks vs an alternative process involving twenty RR=5 tasks?

Kendra’s response: In and of itself, the JHA does not necessarily help compare a process with an alternative one. Green chemistry metrics can be helpful for comparing two different processes, though there will probably be certain aspects of one that are better and certain aspects of the other that are better.

In some cases, the user’s chemical intuition is the best tool to help decide which route to take after these comparisons have been done. I would probably want to avoid using a particularly hazardous chemical (where severity of consequences would be life-threatening, for example), even if it meant doing 2 or 3 extra steps that were lower risk. In the end, though, it’s going to come down to the individual chemist; the JHA is used to make sure that person knows the risks exist, but it’s up to the individual chemist to decide what to do with that information.

Ralph’s comment: As I suggested above, the research laboratory’s available equipment  and resources will impact  the best strategy for managing chemical hazards, so the ACS tool does not try to address all situations. Rather, it outlines best practices for addressing the issues raised by the Chemical Safety Board’s report on academic laboratory safety.


Q&A on Hazard Assessments webinar

On May 11, 2017, Ralph Stuart and Dr. Kendra Leahy Denlinger presented an ACS webinar on Creating a 21st Century Chemical Research Laboratory: Hazard Assessments and Fundamentals. This webinar was co-sponsored by the DCHAS and the ACS Green Chemistry Institute.  Their slides can be downloaded from the ACS Webinar web site. The primary topic of discussion was the JHA section of the ACS Hazard Assessment web site, but other topics, including ball-milling as an alternative to solvent-based chemistry, Green Chemistry metrics and ACS lab safety resources were covered.

Because of time limits, some of the 50+ questions asked by the audience were not answered, so our response to some of the most common questions are provided here. The questions are organized into 5 categories:

  1. General Lab Safety Issues
  2. Laboratory Safety Culture Questions
  3. Risk and Green Chemistry Rating Methods
  4. Green Chemistry Techniques

Click on the links above to see our responses to the audience’s questions. If you have follow-up questions, feel free to contact Ralph or Kendra by e-mail.

5 Key Safety Questions for Chemical Demonstrations

At the Spring, 2017 ACS national meeting, CHAS members Ralph Stuart and Sammye Sigmann made presentations in the Division of Chemical Education technical program on topics related to undergraduate research safety. Sammye’s  presentation was entitled:
Integrating Hazard Identification and Risk Assessment into Course-based Undergraduate Research (CURE)

Ralph’s (which Sammye co-authored) was entitled:
Providing laboratory safety education to REU audiences.

In addition, they co-authored a poster for Sci Mix. An overview of the poster and a link to it are provided below.
In 2016, the ACS Division of Chemical Education (CHED) updated their “Safety Guidelines for Chemical Demonstrations”. The Guidelines are available at the CHED web site. Look at DCHAS web site to see how these guidelines align with the “5 Key Questions”.

This poster provides a quick overview of the five key safety questions that anyone planning chemical demonstrations or experiments should ask and answer prior to work. It is also important to be aware that local jurisdictions may require more extensive planning for some demonstrations and so for everyone’s safety – check with the local Fire Department for help with planning your demonstration.

The Five Key Questions are:

  1. What specific chemical or physical reactivity hazards are associated with the way I’m using these chemicals?
  2. What type of ventilation do I need?
  3. What personal protective equipment do I need?
  4. What emergency response protocols will be needed if something goes wrong?
  5. What will I do with the waste?

Sigmann, S.; Stuart, R.

Assessing Risk: Five Key Questions for Safe Research and Demos. inChemistry Magazine, 2016, September/October, 6-9.

Five Chem Safety Questions poster


Update on Chemical Safety Information in PubChem

PubChem LCSS Update – March 2017

The PubChem database, hosted by the US National Library of Medicine, includes a wide variety of data on over 90 million chemical compounds. PubChem’s  goal  is to make this data accessible to chemists, chemical safety professionals, chemical educators and others working with laboratory chemicals. Data are reported from multiple sources, allowing users to compare and determine the best use of this data in their work. The data are also organized to facilitate downloading in a variety of formats as well via programmatic access for reuse in local software applications.

In addition to structural, physical and toxicological raw data, the PubChem collection includes chemical safety information from national and international agencies. For human browsers, this chemical safety information in PubChem is organized into a data view based on the Laboratory Chemical Safety Summary (LCSS) format described in “Prudent Practices in the Laboratory“.  This LCSS view chemical and physical properties and safety information for compounds that have Globally Harmonized System designations publicly available. The number of records with this chemical safety information has increased from 3000 in 2015 to more than 103,000 today. LCSS data provided by PubChem are intended to support, but not replacelaboratory risk assessments, Safety Data Sheets and institutional guidance for safe laboratory practices and procedures.

Notably, the data compiled by PubChem includes safety information beyond that generally provided by Safety Data Sheets. This additional information is found in sources such as the NIOSH Pocket Guide, CAMEO and European Chemicals Agency, among others. There are also specific incompatible reactions reported from the  Hazardous Substances Data Bank (HSDB), sourced from Sigma Aldrich Safety Center notes, the National Fire Protection Association Fire Protection Guide to Hazardous Materials, Sax’s Dangerous Properties of Industrial Materials, Bretherick’s Handbook of Reactive Chemical Hazards and others.

LCSS data can be viewed online, or downloaded either by individual compound or in bulk.  In this way, PubChem information can be used to support electronic safety tools such as institutional chemical inventory management systems or laboratory-specific personal protective equipment guidelines. More information about this feature can be found here.

Traffic to the safety information in PubChem has increased over 80% in the past year. The PubChem staff are interested in continuing to improve the usability and accessibility of this information to the laboratory community. To this end, representatives of the ACS Divisions of Chemical Information (CINF) and Chemical Health and Safety (CHAS) are working with the PubChem staff to identify additional sources and uses for health and safety data. Efforts are also underway to improve annotation of the data and enable more specific data retrieval options.  We welcome  ideas for organization and presentation of the data. To participate or provide comments, contact the CINF safety representative, Leah McEwen at lrm1@cornell.edu or the CHAS secretary, Ralph Stuart at ralph.stuart@keene.edu.

An exposure assessment of desktop 3D printing

The Editor’s Spotlight for the March / April 2017 issue of the Journal of Chemical Health and Safety is shining on:

An exposure assessment of desktop 3D printing by Tracy L. Zontek, Burton R. Ogle, John T. Jankovic, and Scott M. Hollenbeck

A preliminary hazard analysis of 3D printing included process monitoring in two working environments; a small well ventilated materials development laboratory with a Makerbot printer (polylactic acid filament) and a poorly ventilated lab, home-like in terms of room size and ventilation with a Da Vinci XYZ printer (acrylonitrile- butadiene-styrene).

Particle number, size and mass concentration were measured within the printer enclosures, breathing zone, and room simultaneously. Number concentrations were elevated above background typically in the 103 – 105 particles/cm3 range. During printing >99% of the aerosol number concentration was within the ultrafine particulate (UFP) and nanoscale size range. Condensed aerosol emissions from the Da Vinci XYZ printer was examined by Fourier infra-red spectroscopy and suggested isocyanic acid and n-decane as two possible chemical components. Light microscopy and transmission electron microscopy with energy dispersive analysis by X-ray identified individual and aggregated particles highly suggestive of combustion, accompanied by a variety of metallic elements.

Adverse health effects associated with 3D printing related to chemical vapor off-gassing in well ventilated space appears to be low. At this point the significance of ultrafine particle emission is under growing suspicion in its relationship to inflammatory, pulmonary, and cardiovascular effects. Preliminary recommendations for particulate control developed from this analysis are based on good industrial hygiene practice rather than compelling adverse health effects.

You can download the complete article here. An exposure assessment of desktop 3D printing

Chemical, Sample & Asset Management Tools

Wednesday’s presentations on Chemical, Sample & Asset Management Tools discussed a variety of aspects of how the safety program collects, organizes and uses data and information related to chemicals and their hazards. The morning’s presentations focused on chemical inventories: why institutions need them; some platforms for collecting and reporting the information associated with them; and what they look like “on the ground”.

The afternoon presentations took a more global approach to chemical safety information in the lab, discussing the organizational, environmental and information contexts of this data.  The last speaker of the day described an emerging innovative approach to collecting “Lessons Learned” information from laboratory events,

Chemical inventories: What are they good for? R. Stuart

How UNHCEMS has evolved from a Chemical Inventory Tracking system to an Environmental Management Tool. C. Myer, P. Collins, A. Glode

Use of RFID and scanning technologies for managing large Chemical Inventories. J.M. Pickel 10:25: Intermission.

Developing a cloud based chemical inventory application for the University of California System (UC Chemicals). H. Weizman

Using a chemical inventory system to optimize safe laboratory research. G. Baysinger, R. Creed, L.M. Gibbs

Chemical stockroom management: Lessons learned ten years in. S.B. Sigmann

UC Safety: An Integrated Approach to Your Chemical Management Needs (link to demo site) J. Ballinger

PubChem’s Laboratory Chemical Safety Summary (LCSS). S. Kim, J. Zhang, A. Gindulyte, P. Thiessen, L. McEwen, R. Stuart, E. Bolton, S. Bryant

Socio-Legal Issues in the Application of Semantic Web Technology to Chemical Safety. J.G. Frey, M.I. Borkum

Precompetitive collaboration to advance laboratory safety C.I. Nitsche. Link to the project web site.

Developing, Implementing & Teaching Hazard Assessment Tools

Tuesday’s presentations discussed the Developing, Implementing & Teaching Hazard Assessment Tools from a variety of points of view, including their impact on lab safety culture; their role as an information and educational process in the laboratory; and how institutions can provide oversight of the quality of this work.

The afternoon session was a 3 hour workshop that discussed how the Bowtie Methodology to hazard and incident analysis can be applied in the laboratory sessions through several examples worked through in small groups.

Creating a Culture of Safety: APLU Recommendations and Tools for Universities and Colleges. K. Jeskie

Parsing the Chemical Risk Assessment Process for the Laboratory. R. Stuart

Incorporating Hazard Assessment into Laboratory Curricula: One Pathway to Growing a Sustainable Safety Culture. L.J. Tirri

A Remarkable Advance in Lab Coats for Chemical Exposure Prevention C.A. Merlic

Software Tools to Assist and Promote Laboratory Safety. C.A. Merlic, S.M. Hussain

Using Case Studies and Receving Ancillary Benefits Through Instruction and Use of What-If Hazard Reviews in an Academic Research Environment. K.W. Kretchman

System to identify, analyze and control the hazards of laboratory researcher at Argonne National Laboratory. S. Baumann, S. Rupkey

Hazard Review and Approval System at the National Institute of Standards and Technology. S.G. Ringen

Development of a database for hazard assessment and work approval in the Material Measurement Laboratory at the National Institute of Standards and Technology (NIST). E. Mackey, C. Vogel, B. Brass

Introduction to Bowtie Methodology for a Laboratory Setting. C. Boylan, M.B. Mulcahy

Identifying and Evaluating Hazards in Research Laboratories

PDF versions of DCHAS technical presentations from the Fall, 2013 ACS National Meeting